
ABSTRACT

DYER, ANDREW TRISTAN. Lightweight Formal Methods in Scientific Computing. (Under the
direction of John Baugh.)

Computation is an indispensable tool for scientists and engineers as they seek to understand

and shape the world around us. Despite broad and recognized impacts, the field of scientific com-

puting faces challenges related to reliability, reproducibility of results, and productivity. Recent

studies confirm what many have suspected or experienced firsthand, that existing practices of

constructing scientific software are inadequate and limiting the pace of technological progress.

Sources of difficulty may stem from fundamental characteristics of the problem domain, along with

cultural and development practices within it. For example, programmers in scientific areas are often

domain experts with a Ph.D. in their respective fields, and a single scientist may take the lead on a

project, relying on self-education to pick up whatever software development skills are needed. Such

practices are long-standing, and represent a disconnect from the software engineering community.

Proposals to address these concerns are varied; recommendations ranging from development and

quality assurance practices to new design approaches have been suggested.

We develop an approach based on lightweight formal methods, which have received relatively

less attention in scientific computing, to address these concerns, allowing us to focus on the essential

complexities of software. We employ a state-based formalism called Alloy, which offers rich data

modeling features and automatic, push-button analysis performed within a bounded scope using a

SAT solver. To evaluate the approach, we begin with a small study of one of the earliest successful

algorithms in civil engineering, the moment distribution method. This example, though small, is

representative in important ways of scientific software due to its iterative and spatially discrete

nature. Building on this experience, we turn to a more in-depth example to better understand the

needs of a real-world application. In this case study we reason about the structure and behavior of

sparse matrices, which are central to many applications in scientific computation. To express the

kind of stateful iteration patterns characteristic of scientific software, a new idiom is presented for

loops with incremental updates; it is then applied to sparse matrix-vector multiplication, matrix

transpose, and translation between sparse formats. To improve the visualization of instances with

spatial and positional features, we introduce a new web-based front-end for Alloy called Sterling.

Users enjoy the same immediate visual feedback the Alloy Analyzer provides, but with enhanced

Graph and Table Views that extend existing functionality and improve visual consistency between

instances that dynamically evolve as part of a trace. In addition, to better facilitate the design and

understanding of complex models in science and engineering, Sterling offers a Script View for

creating domain-specific visualizations and improving insight. The approach, idiom, and tools

we present are intended to help scientists and engineers manage the complexities of the software

they write, and to meet fundamental design and quality assurance challenges that are intrinsic to

scientific computation and related types of numerical software.
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CHAPTER

1

INTRODUCTION

Computation is an indispensable tool for scientists and engineers. Despite broad and recognized

impacts in scientific computing, however, the field is challenged by concerns around reliability,

reproducibility of results, and productivity. Recent studies have brought increased attention to

existing practices of constructing scientific software, which are shown to be inadequate and limiting

the pace of technological advancement. In a comprehensive review of the literature that covers the

interaction between software engineering and scientific programming, Storer [74] catalogs numer-

ous empirical studies of software “thwarting attempts at repetition or reproduction of scientific

results.” Among these studies are attempts to measure the repeatability of results in computing

science, one of which found that only around a quarter of the research work from recent computing

science conferences could be conveniently reproduced by acquiring, compiling, and running the

associated source code [27]. Productivity problems are also reported, which Faulk et al. [32] refer to

as a productivity crisis because of “frustratingly long and troubled software development times.”

That these challenges exist is perhaps not surprising; software is “essentially” complex, intan-

gible, and volatile in nature [22], and the typical characteristics of scientific software, including

numerical issues, rich data, complex parallelism, and long running times, compound these chal-

lenges. We observe, though, that many of the same challenges exist in the broader software industry,

and countless methods and tools have been developed to address them. Despite this progress in

other domains, the adoption of established software engineering practices and tools in scientific

computing is limited at best [77]. Why is this the case, and why does the “communication chasm,” as

Carver puts it, between software engineering researchers and scientists who develop software exist?

One explanation for this “gap” is a lack of formal training. Developers of scientific software are

typically experts in their field, often with a Ph.D., who have little training in software engineering
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tools and techniques. According to one study [24], scientists and engineers overestimate their ability

to produce high quality software. In a self-assessment of their ability to produce quality software,

scientist-developers rated themselves highly despite low awareness of many software engineering

practices, and the authors conclude that the results of the survey support their argument that

scientist-developers simply “don’t know what they don’t know.” In another survey of almost 2,000

scientists, researchers found that developers of scientific software believe testing is important but

typically lack sufficient knowledge about it [38]. Conversely, we observe that computer scientists, who

have the training and expertise to produce high quality software, may not have the domain-specific

knowledge required to write software in the scientific domain.

We must nevertheless acknowledge the fundamental differences between scientific and other

types of software. To examine these differences and related issues, researchers from the scientific

computing and software engineering communities came together in 2009 for a workshop whose

outcomes are summarized by Carver [25]. In this workshop, researchers identified key characteristics

that set apart scientific software. First, a lack of test oracles means that validating results can be

difficult, if not impossible. It is often the case that for the types of large scale simulations performed

by scientific software, such as those simulating natural processes like ocean and atmospheric

circulation, there is no known solution that can be used to validate results. In these cases researchers

typically have to settle for plausibility checks based on conservation laws or other principles that

are expected to hold. Furthermore, because these types of simulations often require extensive

computing resources in terms of processing power and data throughput, there tends to be a higher

focus placed on performance and hardware utilization over code quality. Then, because projects

often explore unknown sciences, the requirements are not necessarily known a priori and may

emerge and evolve throughout development. Finally, the lifecycle of a scientific software project is

also likely to differ from that of other types of software. In some cases, a piece of software may be

written and used only once by a single researcher, and in others it may be adopted by the community

and survive decades of continued development and contributions from other scientists, who may

also have little formal training in computer science. We must conclude that it is not just a lack of

formal training that contributes to the disconnect between software engineering and scientific

software development practices.

To address these and other challenges, some have suggested adopting methods and tools from

the computer science community. These include development processes such as agile methods,

quality assurance practices such as unit testing, inspections, and continuous integration, design ap-

proaches such as component architectures and design patterns, and formal methods, where models

of software are created to explore and understand design. Attempts to adopt these approaches have

been met with varying levels of success, as some transfer more easily than others. Version control

systems and continuous integration tools, for example, are easily adopted [8], and some even argue

that agile methods are a “better fit” for the dynamic and concurrent nature of scientific software

development [3, 83]. Formal methods, on the other hand, have received little attention, possibly

due to “the additional challenge of verifying programs that manage floating point data” [74].
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If we pause and consider what scientific programs are really like, however, a previously over-

looked role for formal methods may begin to emerge. The subject matter of scientific software often

involves physical and natural processes where space and time are viewed as being continuous.

The software that simulates these processes, however, looks less like a set of purely analytic func-

tions and more like a combination of discrete data structures, algorithms, and of course numerical

computations. As a result, one might adopt a perspective that separates concerns, and thereby

avoid mixing the types of reasoning best suited for numerical computations and the "interstitial

machinery" throughout which they are embedded. State-based formal methods are particularly

well suited for reasoning about the structural and behavioral characteristics that are intrinsic to

this latter category. We cannot, of course, ignore issues related to numerical computations such as

floating point accuracy, but we posit that it is easier to reason about them separately.

The overall goal of this research is to address fundamental design and quality assurance chal-

lenges that are intrinsic to scientific computation and related types of numerical software. Addressing

them may also lead to accompanying gains in productivity, particularly if better designs improve

maintainability and extensibility, given the lifespans typical of scientific software products. While

numerous directions might be taken, our premise and motivating viewpoint is the central role

that modeling can and must play in the process of designing and working with complex artifacts,

including scientific programs. Culturally, the fit may be a natural one: scientists and engineers are

already accustomed to working with models, and with the kind of automatic, push-button analysis

supported by some state-based formalisms, those who develop software can focus on modeling

and design instead of theorem proving.

This dissertation is organized as follows. In Chapter 2 we present a state-based approach for rea-

soning about scientific software, using abstraction and refinement principles to separate numerical

concerns from other sources of complexity, such as those introduced to meet performance goals.

Elements of the approach include declarative modeling and automatic, push-button analysis using

bounded model checking, as embodied in lightweight tools like the Alloy Analyzer [46]which, while

increasingly promoted in areas like communication protocols and control systems, may also be

exploited in scientific domains. This chapter is an extension of the work [12] presented at ABZ 2018:

The 6th International Conference on Abstract State Machines, Alloy, B, TLA, VDM, and Z.

In Chapter 3 we further develop the approach for reasoning about sparse matrix computations,

and show how data abstraction and refinement principles can be used to check invariants and

perform bounded verification of safety properties. This work [31] appears as published in the 2019

IEEE/ACM 3rd International Workshop on Software Correctness for HPC Applications.

In Chapter 4 we introduce a web-based interface for Alloy called Sterling, with enhanced Graph

and Table Views, as well as a Script View for domain specific visualizations. Users receive the same

immediate visual feedback the Alloy Visualizer provides, but with added features that better facilitate

and embrace an iterative approach.

Finally, in Chapter 5 we conclude with closing remarks and discuss the ongoing development of

Sterling.

3



CHAPTER

2

MODELS OF SCIENTIFIC SOFTWARE:

A STATE-BASED APPROACH

2.1 Introduction

Scientists increasingly rely on computational models to explore and understand the world around

us, with diverse applications throughout the physical, chemical, and biological sciences. In 2005,

The President’s Information Technology Advisory Committee (PITAC) issued a report referring to

computation as a “third pillar” of science, placing it alongside theory and experimentation. The

report underscores qualitative transformations and discoveries throughout the natural sciences,

as well as in engineering, manufacturing, and economic processes, which often rely on scientific

models to predict the effects of design decisions. Coastal engineers, as just one example, evaluate

alternative flood protection measures by subjecting them to large-scale, simulated hurricane events.

The performance and fidelity of scientific models are therefore key determinants affecting the

quality of those designs.

2.1.1 Challenges

Despite broad and recognized impacts, the field of scientific computation faces a number of chal-

lenges. Meeting quality and reproducibility standards is a growing concern [82], as is productivity [32].

Not merely anecdotes, numerous empirical studies of software “thwarting attempts at repetition or

reproduction of scientific results” have been cataloged in a recent article by Storer [74]. In one [40]

and in a more recent follow-up [39], over a dozen independently developed commercial codes
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for seismic data processing were compared, showing a rate of numerical disagreement between

them of about 1% per 4,000 lines of implemented code, and that “even worse, the nature of the

disagreement is nonrandom.” In addition to cataloging the quality concerns reported in those

studies, Storer further cites their effects, including a widespread inability to reproduce results and

subsequent retractions of papers in scientific journals. Productivity problems are also reported,

which Faulk et al. [32] refer to as a productivity crisis because of “frustratingly long and troubled

software development times” and difficulty achieving portability requirements and other goals.

Sources of difficulty may stem from fundamental characteristics of the problem domain, along

with cultural and development practices within it. To examine these and related issues, researchers

from the scientific computation and software engineering communities came together in 2009 for a

workshop whose outcomes are summarized by Carver [25]. In an observation about development

practices, he notes that programmers in scientific areas are often domain experts with a Ph.D. in

their respective fields, and that a single scientist may take the lead on a project and then rely on

self-education to pick up whatever software development skills are needed. Such practices are

long-standing, and represent a disconnect from the software engineering community that has been

variously referred to as a “chasm” [49, 70] and a “communication gap” [32].

Other observations, however, point to the unique challenges facing the developers of scientific

software. For instance, projects are often undertaken, as one might imagine, for the purpose of

advancing scientific goals, so results may represent novel findings that are difficult to validate.

In the absence of test oracles, developers may have to settle for plausibility checks based on, say,

conservation laws or other principles that are expected to hold [74]. Then, if the software is successful,

its lifetime may span a 20 or 30 year period, starting with development and then moving through

hardware upgrades and evolving requirements that are intended to keep up with ongoing scientific

advancements. Development priorities are such that traditional software engineering concerns,

like time to market and producing highly maintainable code, may receive relatively less attention

compared with performance and hardware utilization [32].

2.1.2 Recommendations

Proposals to address quality and productivity concerns are varied. Storer [74] places new and

suggested approaches into broad categories of a) software processes, including agile methods, b)

quality assurance practices, including testing, inspections, and continuous integration, and c) design

approaches, including component architectures and design patterns. Other recommendations have

been made by Faulk et al. [32], who argue for three fundamental software engineering strategies

that are successful in other domains: automation, abstraction, and measurement. On the value of

providing scientifically relevant computational abstractions, for instance, they state:

“Important higher-level abstractions will allow scientific programmers to express desired

computations in ways that reflect the science and mathematics of the problem domain

rather than the computing system.”

5



In the category of quality assurance practices, Storer adds formal methods, noting a couple

of experience reports, but also observing that such approaches have received considerably less

attention in the scientific programming community, possibly due to “the additional challenge of

verifying programs that manage floating point data.”

2.1.3 Scope and organization

In what follows, we describe a state-based approach for reasoning about scientific software, and

show how abstraction and refinement principles can be used to separate numerical concerns from

other sources of complexity, such as those introduced to meet performance goals. Elements of

the approach include declarative modeling and automatic, push-button analysis using bounded

model checking, as embodied in lightweight tools like Alloy Analyzer [46]which, while increasingly

promoted in areas like communication protocols and control systems, may also be exploited in

scientific domains. Our focus is on design thinking for scientific software systems, an inherently

iterative process that, with tool support, is intended to help developers gain a deeper understanding

of the structure and behavior of the programs they write.

As a follow-up to a verification study of a large-scale ocean circulation model used in produc-

tion [11] and a short paper presented at ABZ 2018 [12], the discussion below expands on those

ideas and shows how and why state-based formal methods fit into the broader context of scientific

computation. The example we present, though small, is chosen to be representative in important

ways of scientific software and to highlight limitations of other approaches that have been proposed.

By working with models of software, we avoid overcommitting to implementation languages and

other details, allowing us to develop and communicate transferable design and quality assurance

concepts.

The chapter is organized as follows. Section 2.2 gives some perspective on scientific software, its

characteristics, and an approach for utilizing state-based formal methods. Section 2.3 presents a

simple, illustrative example that includes elements of the approach and portions of a specification

in Alloy that can be found online [1]. Section 2.4 discusses instruction in declarative formalisms

like Alloy and a template-based approach for building models. Section 2.5 includes representative

selections of related work by ourselves and others. Section 2.6 concludes the chapter.

2.2 Perspective and Approach

The structure and behavior of scientific programs constitute a kind of essential complexity, we

believe, that is not merely a byproduct of inconvenient languages or other accidental complexities,

to employ a distinction made by Brooks [21] about software engineering concerns. By structure

we mean static relationships between elements of program state, that is, an assignment of values

to variables. By behavior we mean dynamic relationships, that is, a sequence of states or steps

in a computation, which may include nondeterminism to avoid overspecification. Structure and

behavior may each find expression in different ways in different programming languages, and so
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demonstrating the relationship to code is important and also within the scope of our concerns

(primarily in Fortran and C++, but also in modern languages like Go).

Below we characterize the nature of scientific programs and give some perspective on a possible

role that state-based methods can play in reasoning about them.

2.2.1 About Scientific Programs

We consider the application of state-based methods in a relatively uncharted domain, scientific

computation, for which there is little community experience in working with formal methods. We

might ask about the essential complexities, what they are, and where formal methods might help.

By way of contrast, when computer engineers model systems, they already have some experience in

getting at these questions. So, for instance, when specifying a two-phase handshake protocol they

know whether they can ignore what’s going through the pipe: they generally have some sense of how

and what to specify, and what to ignore. There is far less of this kind of experience with programs in

scientific domains, so it is helpful to take a step back and characterize what they are like.

The subject matter of scientific programs includes the physical and natural processes that sur-

round us, where space and time are traditionally viewed as being continuous. Circulation of currents

within the atmosphere and oceans, for instance, involves state that is continuously varying and

where, indeed, continuity arguments are used to “fill in” gaps that may be associated with sampled

data. The computational apparatus underlying ocean circulation models, however, looks less like

purely analytic functions and more like an amalgam of discrete and continuous constructions that

allow, as one example, the representation of irregular land and seafloor geometries as piecewise

polynomial surfaces.

The types of discretizations that may be employed in both time and space are varied, and each

has its own performance, accuracy, and ease-of-development implications. As a result, it may be

helpful to separate concerns and avoid mixing the types of reasoning best suited to the respective

types of processes, whether discrete or continuous.

2.2.2 Separating Concerns

Related studies on formal methods, though few, have targeted somewhat different aspects of scien-

tific programs, allowing us to make observations and draw some comparisons. Most have focused

on numerics—of which the works of Bientinesi et al. [15] and Siegel et al. [72] are representative—by

combining model checking and the reals with applications to some of the direct methods of linear

algebra.1 However, the scope of systems that can be so analyzed will remain rather limited until the

deep, semantic proofs of numerical analysis [59] can be accommodated as part of the reasoning

process.

1By direct methods, we mean those that produce an exact solution, modulo rounding errors, in a finite number of
steps. Iterative methods, on the other hand, successively approximate a solution, gradually improving it until convergence
is reached.
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We take the position that a separation of concerns is in order, and propose something akin to

the two-phase handshake protocol analogy, where the data going through the pipe are, in this case,

numerical expressions. We cannot ignore them, of course, but we aim to consider them separately

using the conventional tools of numerical analysis.

Accordingly, we advance the following perspective:

scientific

programs
=

numerical

expressions
+

interstitial

machinery

By interstitial machinery we mean the data structures and algorithms throughout which numerical

expressions are embedded. In many cases, the interstitial machinery is itself a complex apparatus,

as we find in the case of adaptive, multiscale, multiphysics applications, for instance, and these are

aspects of a program that warrant increased scrutiny and care. Correctness arguments for this part

of scientific programs can be made without simultaneously reasoning about, say, elements of the

Gershgorin circle theorem for eigenvalues. Instead, results of numerical analyses may be brought

into the modeling process in the form of invariants and other structural properties.

With respect to numerical analysis, the form of the results needed from the effort may vary, but

this type of work may be conducted independently and used to inform the process undertaken

when reasoning about the interstitial machinery so that the overall conclusions are sound, as we

illustrate in Section 2.3. Beyond that example and an appeal to experience, a supporting idea for the

claim is the following:

The numerical analyses performed for scientific computations often apply, unchanged,

throughout a broad range of implementation choices and modifications, changes in

libraries and solvers, and diverse hardware upgrades, over the life of the program.

2.2.3 Abstraction and Refinement

Apart from questions about what to model are those dealing with a specification’s level of abstraction.

At the highest level are requirements the overall program must satisfy, or approximate, and these may

be articulated in prose or in a more formal notation. In scientific domains, the problem statement

may already be posed in terms of mathematics. For example, a simple boundary-value problem

may be stated as follows:

Find a function u = u (x ), 0≤ x ≤N that satisfies the following differential equation and

boundary conditions:

−u ′′+u = x , 0< x <N

u (0) = 0, u (N ) = 0
(2.1)

For larger scale problems, like simulating ocean currents and waves, one would likely start with a

system of hyperbolic partial differential equations in three dimensions that includes terms arising
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PDEs

discretization ⇓ FEM, FD, FV

Finite System of Equations

structure ⇓ behavior

Specification

data model ⇓ parallelism

Refinement

⇓

Implementation

Figure 2.1 A refinement perspective for scientific software, where parts of the highlighted Specification
and Refinement steps are formalized using state-based methods.

from conservation principles, Coriolis and hydrostatic forces, atmospheric pressure gradients, wind

and seafloor stresses, tidal potentials, and various types of boundary conditions.

Although we have an obligation to show that programs satisfy these requirements, such high-

level descriptions offer little help in structuring programs or reasoning about them, which motivates

us to specify what they do at lower levels of abstraction. For example, a developer may choose to

recast the problem in variational form and approximate a solution by discretizing a spatial domain

using finite element methods. The tools of numerical analysis would then be used to derive or

validate such an approach, and in the process yield obligations in the form of invariants that must

be satisfied by individual parts of a scientific program. Meeting those obligations can be achieved

in any number of ways, often while attempting to exploit hardware capabilities as effectively as

possible.

Figure 2.1 outlines a refinement approach for scientific software that might be used to solve

partial differential equations (PDEs), which are discretized to produce a finite system of equations

that can then be solved by algebraic methods. It is at this intermediate level—between the approx-

imation method and its implementation—that we see a role for state-based methods, i.e., in the

specification of the finite system and one or more refinements that successively reduce nondeter-

minism. Doing so allows us to check that a) the specification is consistent, i.e., it has a model (in the

logical sense), and b) the refinement satisfies the specification under a suitable refinement mapping.

Because of the central role of refinement, we employ nondeterminism as a means of expressing

concurrency [54] in specifications and refinements that are written in an interleaving style [55]. The

analyses we describe are expressed as safety properties for avoiding errors, and additional checks

can be performed in a variant of Alloy called Electrum [23] based on Linear Temporal Logic (LTL).

With respect to data, the terms and parameters appearing in a problem statement like Eq. 2.1

represent aspects of the physical and natural world that get pushed down into lower levels of
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abstraction. These may be large and varied datasets, and it should come as no surprise that they

capture rich state in the form of spatial, geometric, material, topological, and other attributes,

which must be represented. Thus, while other modeling approaches might be considered, state-

based methods seem particularly appropriate. Here, we focus on Alloy because of its support for

conceptual design: it was influenced by modeling languages like OMT and UML and is well-suited

for building object models. Perhaps most importantly, Alloy supports implicitness in a specification,

so problems with rich state and varying spatial discretizations, for instance, can be accommodated

in a straightforward manner.

2.2.4 State-based methods and Alloy

State-based or model-oriented approaches describe a system by defining what constitutes a state and

the transitions between states, or operations. The state-based formalism we employ is Alloy [46], a

declarative modeling language that combines first-order logic with relational calculus and associated

operators, as well as transitive closure. It offers rich data modeling features based on class-like

structures and an automatic form of analysis that is performed within a bounded scope using a SAT

solver. For simulation, the analyzer can be directed to look for instances satisfying a property of

interest. For checking, it looks for an instance violating an assertion: a counterexample. The approach

is scope complete in the sense that all cases are checked within user-specified bounds. Alloy’s logic

supports three distinct styles of expression, that of predicate calculus, navigation expressions, and

relational calculus. The language used for modeling is also used for specifying the properties to be

checked.

From Alloy’s declarative underpinnings comes expressive power and an effective means of

reducing complexity and probing designs. As Jackson writes [46], code is a poor medium for exploring

abstractions, and tools like Alloy offer modeling environments that support an iterative design

scenario akin to what might be performed by, say, a civil engineer designing a bridge. The approach

is sometimes referred to as lightweight [48] because there is partiality in modeling—a focused

application of the method—and partiality in analysis, since the verification being performed is

bounded. With respect to the latter, and on the value of the approach, we appeal to the small scope

hypothesis: if an assertion is invalid, it probably has a small counterexample [47]. Our approach

may be considered lightweight in an additional sense: we are able to draw useful conclusions about

scientific software without simultaneously reproducing the semantic proofs of numerical analysis.

2.3 Illustrative Example

The perspective above draws on experience with various kinds of scientific software used in both

research and production, and yet small problems can also be useful objects of study for insights

they offer and for communicating principles. The example chosen here, for instance, shares some

of the same problem structure found in the simulation of other physical and natural systems,

including the data movement and concurrency patterns seen in more complex parallel element-by-
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Figure 2.2 Continuous beam with applied loads, supports at labelled joints [80].

element solvers [26]. Just as important, in terms of insight, it demonstrates the relationship between

numerical analysis and the role that modeling with state-based methods can play, in conjunction

with it, to reason about scientific programs.

2.3.1 Moment distribution

Well-known among civil engineers, the moment distribution method [29, 80] is an iterative tech-

nique for finding the internal member forces that develop in building structures, such as tall office

buildings, when external forces are applied to them.2 The calculations can be performed by hand,

and the rapid convergence of the method in practice made it possible for engineers to estimate

internal forces in just a few iterations. Although the method has largely been superseded by the

convenience and availability of more general computational approaches, it was the primary tool

used by engineers to analyze reinforced concrete structures well into the 1960s.

Conceived in the 1920s, before the advent of computers, the method nevertheless displays

features that are interesting from a computational point of view, and is applicable to small beams, as

shown Fig. 2.2, and to more complex structures, including multistory, multibay, three-dimensional

frames. Intuitively, the method works by “clamping” joints, applying external loads, and then suc-

cessively releasing them, allowing them to rotate, and reclamping them. Each time, the internal

forces at the joints are distributed based on the relative stiffnesses of the adjoining members. The

method converges under a variety of distribution sequences, e.g., varying the order in which joints

are unclamped. In addition, there is inherent concurrency in the method since internal forces can

be distributed simultaneously and summed.

In its most general form [13], the moment distribution method is similar to the asynchronous,

chaotic relaxation algorithms of Baudet [9] and Bertsekas [14], with processes clamping and unclamp-

ing joints concurrently. In this scenario, portions of a building structure may converge numerically at

different rates as the computation unfolds, depending on process scheduling. The nondeterminism

available here is also inherent in the methods commonly used to solve other types of boundary-value

problems, including those associated with elliptic partial differential equations, which may exploit

nondeterminism in different ways depending on problem characteristics and hardware features.

From this we observe that a straightforward combination of model checking and symbolic execution

over the reals [72], as a verification approach, is ill-suited to a large class of problems, since such

2A moment is a rotational force that produces bending in a beam or column in the plane of loading.
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Figure 2.3 Unknown moments (above) and deflected shape (below) [80].

programs appear inequivalent when they in fact converge to the same solution through an entirely

different sequence of operations.

2.3.2 Basic procedure

The 120-kN and 50-kN/m loads applied to the beam in Fig. 2.2 induce bending moments whose

magnitudes are sought near joints a , b , and c . These internal forces, labelled Mi j in Fig. 2.3, are

the basic unknowns, occurring at member ends a b , b a , b c , and c b , and producing joint rotations

θb and θc in the deflected shape shown at the bottom of the figure. A boundary condition at joint

a prevents rotation at the left end of the beam: such joints are said to be fixed against rotation.

For those that are not fixed, equilibrium considerations dictate that moments at the joint should

balance, so that at joint b , for instance, the algebraic sum of its end moments Mb a and Mb c must

equal zero in the final solution.

The method starts with loads removed and all joints clamped to prevent rotation, after which

loads are applied in the form of external moments at the member ends. A basic step is that of

unclamping, or releasing a joint, which allows the joint to rotate slightly and the moments to

balance, a redistribution of forces that also produces “carry over” effects at the far ends of adjoining

members. Their magnitudes are determined by constants associated with each member end i j ,

that is, by distribution and carry-over factors Di j and Ci j that are based on structural properties

particular to the problem at hand. In general, however, we require for any joint that the distribution

factors associated with its member ends sum to one, and note that a typical carry-over factor is

one-half.

On release, an unbalanced joint becomes balanced, and the amount of the moment to be

redistributed is the sum of its end moments. Releasing joint b , for instance, produces the following

updates:

M ′
b a =Mb a −Db a x (distribution at joint b )

M ′
b c =Mb c −Db c x

M ′
a b =Ma b −Cb a Db a x (carry over to joints a , c )

M ′
c b =Mc b −Cb c Db c x

where x is the amount of the imbalance at the joint before it is released, i.e., x =Mb a +Mb c . Starting
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with the following moments, in units of kN ·m,

Ma b , Mb a , Mb c , Mc b =

〈−172.8, 115.2, −416.7, 416.7〉

the unbalanced moment x at joint b is −301.5 kN ·m. For distribution and carry-over factors of 0.5,

releasing joint b then yields

M ′
a b , M ′

b a , M ′
b c , M ′

c b =

〈−97.425, 265.95, −265.95, 492.075〉

for the member end moments, and we note that M ′
b a +M ′

b c = 0, so the moments at joint b are

now balanced. In general, joints b and c , not being fixed, are eligible for release (when they are not

balanced), and this operation may be performed successively until convergence is obtained. For

distribution and carry-over factors at joint c of 1 and 0.5, respectively, such a process yields the

following solution

M ∗
a b , M ∗

b a , M ∗
b c , M ∗

c b =

〈−27.129, 406.54, −406.54, 0〉

to 5 significant digits and in units of kN ·m. We note that joints b and c are balanced: each is in

equilibrium, as required.

2.3.3 Numerical analysis

A consecutive joint balancing approach, as described above, is similar to an incremental form of the

Gauss-Seidel method [36], which uses the most recently updated estimates at each iteration to solve

a linear system of equations. Other schemes are possible, however, and the procedure is generalized

by Baugh and Liu [13], who present nondeterministic sequential and concurrent algorithms that

exhibit the full range of behavior allowed by the method. To perform the analysis, iteration matrices

are constructed where an i , j entry corresponds to the effect of joint i on the moments at joint

j . Elementary operations are then defined in those terms, and matrix structure is used to show

convergence to the exact solution under a mild fairness constraint that a joint is released infinitely

often.

2.3.4 Specification in Alloy

Results of the study above allow basic steps to be defined without overspecifying their order. To do

so, it is convenient to begin by representing a building structure as a symmetric, directed graph, as

shown in Fig. 2.4, with vertices for joints and pairs of anti-parallel edges for the beams or columns

that connect them. Making use of predicate abstraction [37], the representation indicates whether

or not a joint (a vertex) is balanced, and whether or not a moment is to be carried over from one

joint to another (on an edge). In the figure, for instance, the prior beam is shown midway through
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a b c

Figure 2.4 Structure represented as a symmetric, directed graph.

its initial release-b operation: distribution has been performed so joint b is balanced (shown as a

green vertex), and pending moments have yet to be carried over from b to a and from b to c (shown

as red edge tokens).

A specification in Alloy is shown in Fig. 2.5, where a Joint signature introduces both a type and a

set of uninterpreted atoms. It contains a field neighbors that defines a binary relation on joints; a

topology fact ensures that it has no self loops and is symmetric and strongly connected. A Fixed

signature defines a subset of joints that are prevented from rotating. Together, the signatures and

fact above constitute an implicit, static description of the structure of the problem.

For modeling dynamic behavior, a State signature defines fields balanced and pending that

record at each step whether or not a joint is balanced, and whether or not a moment is to be carried

over on an edge, consistent with the interpretation of the graph shown in Fig. 2.4. We employ an

idiom common to Alloy in predicate show that defines a total ordering on State atoms to create a

global execution trace in terms of the init and step predicates, whose behavior is consistent with the

numerical study of Baugh and Liu [13].

A step is either the release of a joint that is not fixed, a carry-over operation, or a stutter step,

which leaves the state unchanged. The release predicate is enabled on a joint when it is unbalanced

and has no pending carry-over operations to perform, and produces a balanced joint since we view

release and distribution as occurring in a single step; operators + and <: are set union and domain

restriction, respectively. The carryover predicate carries a moment from joint u over to v , making

v unbalanced; operator − is set difference and u→v in this context is a pair. Additional details of

the Alloy language can be found in the text by Jackson [46], and the complete specification and

refinement below are available online [1].

2.3.5 Refinement

Moving closer to an implementation, we consider a procedural refinement in which each joint in

a structure is a separate process, and where synchronous message passing is used to carry over

moments. The idea is to experiment with and check the correctness of different forms of concurrency,

communication, and synchronization apart from the numerics, thereby increasing confidence that

a corresponding implementation in a conventional programming language is based on sound

concepts.

Fig. 2.6 shows a state machine, executed by each process, that begins in test, and where a

transition to send is enabled when a joint is unbalanced, causing it to balance, and where a transition

to recv is enabled when a neighbor is attempting to carry over a moment, causing the receiving joint

to become unbalanced. After either sending or receiving a message, a joint returns to its test state.
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open util/graph [ Joint ]
open util/ordering [ State ] as so

sig Joint { neighbors: some Joint }
sig Fixed in Joint { } −− some j o i n t s may be f i x e d
sig State {

balanced: set Joint , −− j o i n t s t h a t a r e b a l a n c e d
pending: Joint → Joint −− a pending c a r r y o v e r

}

fact topology {
noSelfLoops [ neighbors ] and undirected [ neighbors ]

and stronglyConnected [ neighbors ]
}

fact eligible { all s: State | s.pending in neighbors }

−− s t a r t with no moments t o c a r r y o v e r
pred init [ s: State ] { no s.pending }

−− r e l e a s e a j o i n t , c a r r y o v e r a moment , or s t u t t e r
pred step [ s, s': State ] {

( some u: Joint | u not in Fixed and release [ u, s, s' ] )
or ( some u, v: Joint | carryover [ u, v, s, s' ] )

or stutter [ s, s' ] −− l e a v e s t a t e unchanged
}

−− r e l e a s e and b a l a n c e a j o i n t u , s e t up c a r r y o v e r s
pred release [ u: Joint , s, s': State ] {

u not in s.balanced and no s.pending [ u ]
s'. balanced = s.balanced + u
s'. pending = s.pending + u <: neighbors

}

−− c a r r y a moment from u o v e r t o v , making v unbalanced
pred carryover [ u, v: Joint , s, s': State ] {

u→ v in s.pending
s'. balanced = s.balanced - v
s'. pending = s.pending - u→ v

}

pred show {
init [ so/first ]
all s: State - so/last | step [ s, s.so/next ]

}

Figure 2.5 A specification of the moment distribution method in Alloy [1].
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Figure 2.6 Joint processes communicating by synchronous message passing.

The protocol is akin to a rendezvous in CSP, where senders block until there is a matching receive,

and where nondeterministic choice allows processes to communicate with neighbors in an order

that is left undefined.

To model the refinement in Alloy, a program counter, pc, is added to a subsignature StateR of

State as a field, allowing each process to record its current mode: test, send, or recv. Given initR and

stepR predicates that describe this behavior, refinement R can be shown to satisfy the specification

as follows over all states r and r ′ in StateR :

initR [r ]⇒ init[α[r ]]

invR [r ] and stepR [r, r ′]⇒ step[α[r ],α[r ′]]

under refinement mapping α, an abstraction function that maps every element of StateR to at most

one element in State, and where invR is an inductive invariant that eliminates unreachable states

in refinement R .3 Doing so checks all building topologies (within bounds), and is in this case an

over-approximation, since the specification admits more topologies than we expect to find in actual

building structures.

Embellishments can easily be imagined that bring additional concerns into the picture. Once

the method reaches convergence, for instance, a carry-over operation no longer causes the receiving

joint, within some tolerance, to become unbalanced. A parallel implementation would ideally detect

a state of global quiescence using a separate, lower-priority process or perhaps using a more general

technique like Dijkstra’s ring-based detection algorithm [30]. Other refinements might include red-

black ordering for joint processes and other groupings, both static and dynamic, that are commonly

used in domain decomposition methods to improve performance. In addition, the particulars of

MPI-style communication [58] and other library frameworks may already be specified, and could be

included in the modeling exercise.

Finally, with respect to code, the approach taken above has been implemented in Go using

parallel goroutines and message passing, and with guarded select statements that mimic similar

capabilities found in CSP. Both this and another implementation that includes Dijkstra’s ring-based

detection algorithm are available along with the Alloy specifications online [1].

3Since a process associated with a joint cannot have moments to carry over unless it is in send mode. More generally,
because the refinement mapping is functional, the proof obligations are simplified [84].
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2.4 Instruction and Templates

Declarative languages like Alloy are expressive, but it is not always clear how they can be used to

specify a system. There are no special constructs for parallelism, message-passing, synchronization

or other mechanisms that give some insight into what one is “supposed” to do with it. In other

words, there are few affordances or “action possibilities” that are readily perceivable.

To make this style of modeling more accessible, we are working on a collection of “templates,”

small Alloy models that can be used as a starting point for model building. The idea is to group

together examples that share common features into a category, and to define what may become a

dozen or more categories, each with several examples and variations on them that help reveal an

abstract concept through a series of “concrete” examples.

In designing the collection, we are beginning with simple building blocks, categorizing problems

in scientific computation according to their structure and behavior. We are also including examples

that demonstrate Alloy idioms for state changes, traces, and other structuring mechanisms in the

context of our domain, primarily civil and environmental engineering and science.

This perspective on templates and model building is informed by firsthand experiences in an

undergraduate engineering course on mathematical programming, which involves setting up and

solving declarative, algebraic models that include objectives and constraints in terms of decision

variables. The idea of using templates for instruction is due to Schrage [71] and probably others in

the field of operations research, where the approach is commonly used.

One could argue that the value of state-based approaches must first be demonstrated in practice,

though we might also reimagine what instruction in computation should look like for scientists

and engineers, particularly at the graduate level. An experience of building models and reasoning

about them is likely to be beneficial in the long run, even in situations where formal models are not

developed. Our own anecdotal evidence suggests that it is.

2.5 Related Work

In related work on state-based modeling [11, 10], we look at a large-scale ocean circulation model

used in production and an extension called subdomain modeling that offers substantial performance

gains. Models developed in Alloy allow us to draw useful conclusions about implementation choices

and guarantees about the extension, in particular that it is equivalence preserving. In one of its

earliest applications, subdomain modeling was used in post-Katrina studies by the U.S. Army Corps

of Engineers, where the technique “yielded considerable time and cost savings in the calculations”

when analyzing the Western Closure Complex, a key component of the hurricane storm damage

reduction system for New Orleans.

As an example of reasoning about numerical concerns, in another study [5] we apply hybrid

theorem proving from the field of cyber-physical systems to problems in scientific computation,

and show how to verify the correctness of discrete updates that appear in the simulation of contin-
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uous physical systems. By viewing numerical software as a hybrid system that combines discrete

and continuous behavior, test coverage and confidence in findings can be increased. We describe

abstraction approaches for modeling numerical software and demonstrate the applicability of the

approach in a case study that reproduces undesirable behavior encountered in ocean components

of large-scale climate models.

In representative work by others, Bientinesi et al. [15] use Floyd-Hoare logic to derive and prove

the correctness of dense linear algebra algorithms. Their approach is a correct-by-construction

technique that uses a simplified matrix notation to hide indexing details. The authors show how

invariants for nested loops can be found systematically for a broad class of dense linear algebra

routines.

Siegel et al. [72] present a framework that tests small numerical programs for real equivalence,

meaning that one program can be transformed into the other using the identities of real numbers.

The approach is based on creating a sequential program that serves as a specification and then

using it as the measure against which an implementation is compared, such as a more complex

MPI-based parallel program. Equivalence is checked by building up symbolic expressions in both

programs and comparing them using the SPIN model checker.

2.6 Conclusions

The extent to which formal methods might become more broadly used in the development of

scientific software is an open question. Some of the techniques that automatically extract finite-

state models from code may make such approaches more accessible to a wider community, though

we wonder if tethering them to conventional programming languages is the ideal means of doing

so. The approach described here, by way of contrast, involves us in the development of models of

software, which may offer some advantages: scientists and engineers are accustomed to working with

models anyway, and with automatic, push-button analysis as an alternative to theorem proving, they

can focus on modeling and design aspects. In addition, by not calling for language-specific modules,

interfaces, or classes, the approaches we advance do not presuppose that scientific programmers

commit to a certain kind of programming language or environment to enjoy the benefits of creating

and working with models of software.

Given the fundamental role of computation in modern science, the development and adoption

of better design practices could have far-reaching benefits. Toward that end, we suggest a focus on

essential complexities and scientifically relevant computational abstractions, as advocated by Faulk

et al. [32], using precise and expressive notations that support exploration and analysis. Future work

in this direction may lead to new insights and deeper understanding, as well as auxiliary tools and

instructional materials that make these advances more accessible to scientists and engineers in

traditional disciplines.
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CHAPTER

3

BOUNDED VERIFICATION OF SPARSE

MATRIX COMPUTATIONS

3.1 Introduction

Sparse matrices are commonly used in scientific and engineering domains to reduce storage re-

quirements and minimize computational effort. For applications in large-scale simulation, signal

processing, and machine learning, a variety of formats have been developed—some historical and

more widely used, and others of increasing sophistication that track evolving computer architec-

tures. Sparse implementations are realized in popular packages like SuiteSparse, Sparse BLAS, and

Sparskit, and as components of larger, more general-purpose libraries and frameworks.

To avoid storing zeros, sparse formats use array indirection and other machinery to encode struc-

ture and provide access to non-zero elements, while attempting to exploit hardware characteristics

and optimize performance. Memory safety and full functional correctness are obvious concerns,

not only for developers of libraries but also for users who work directly with sparse formats, since

abstraction boundaries, when present, are often bypassed in the interest of performance.

In ocean circulation modeling—a motivating application for us—sparse matrices figure promi-

nently. Unstructured grid models based on finite element methods use custom assembly routines,

impose boundary conditions for wetting and drying to accommodate overland flooding, and per-

form these and other updates in between calls to linear solvers as they step through time. Preserving

representation invariants is a basic safety concern, and dependencies between formats and solvers

mean that substituting one solver for another can create ripple effects in the codes that use them.

Though important and challenging, static verification of sparse matrix software has received
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little attention. In a study addressing the problem, Arnold et al. [7] describe several attempts to

do so, noting that they “failed to verify the functional correctness of even simple formats using

several state-of-the-art tools,” before creating a variable-free functional language in the style of FP

to support verification with Isabelle/HOL.

In this chapter, we develop and present a state-based approach for reasoning about sparse

matrix computations and show how data abstraction and refinement principles can be used to check

invariants and perform bounded verification of safety properties. We use Alloy [46], a lightweight

formal method, to develop models that represent the structure and behavior of sparse matrices, and

introduce a new idiom that supports the modeling of imperative loop structure, as is commonly

found in scientific software.

To contrast our work with Arnold et al. [7], our models are intended to be more directly relatable

to code in imperative programming languages like Fortran and C++; we rely on a formalism and

tool whose application is more readily transferable to allied problems in scientific computing [11],

allowing for economies of scale in their use; and because verification is bounded, our approach

comes with push-button automation that does not require ingenuity in proving theorems.

The chapter is organized as follows. Section 3.2 introduces the approach, the Alloy language, and

notions of correctness and refinement. Sections 3.3 and 3.4 show how matrix structure and behavior

can be modeled and verified, with examples of ELL and CSR formats. Section 3.5 describes an idiom

for bounded iteration and models for translation between sparse formats, matrix transpose, and

matrix-vector multiplication. Section 3.6 discusses scope, the ability to detect bugs, and limitations

of the approach. Section 3.7 describes related work, and Section 3.8 offers conclusions and directions

for future research.

3.2 Approach

We make use of a state-based formalism called Alloy [46], a declarative modeling language that

combines first-order logic and relational calculus, and includes associated quantifiers and operators,

along with transitive closure. It offers rich data modeling features based on class-like structures and

an automatic form of analysis that is performed within a bounded scope using a SAT solver. For

simulation, the Alloy Analyzer can be directed to look for instances satisfying a property of interest.

For checking, it looks for an instance violating an assertion: a counterexample. The approach is

scope complete in the sense that all cases are checked within user-specified bounds. Alloy’s logic

supports three distinct styles of expression, that of predicate calculus, navigation expressions, and

relational calculus. The language used for modeling is also used for specifying the properties to be

checked.

Because Alloy is a structural modeling language it provides no means of representing real

numbers or floating point values, and has only limited support for integers. In this study, we model

zero and non-zero values relying only on the property that different numerical values are distinct,

and checking for real equivalence of symbolic expressions when and as needed. In related work [11],
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our group uses predicate abstraction in Alloy models to factor out numerical concerns, allowing us

to show that a performance enhancement made to a popular ocean model is equivalence preserving.

Instead of automatically generating verification conditions from code, we work with “abstract

algorithms” that model the array indexing, mutation, and stateful behavior of programs written

in imperative languages like Fortran and C++. Doing so makes the approach language agnostic

and keeps verification tractable, since fine-grained control can be exercised over model details and

scopes. The checks are not exhaustive, but we appeal to the small scope hypothesis [46, 6], which

suggests that most bugs have small counterexamples.

3.2.1 Structure and Behavior

In state-based formalisms like Alloy, systems are described by defining what constitutes a state

and the transitions between states. Though not an obvious choice for scientific software, such an

approach is consistent with the perspective we advance: by separating concerns we can direct

attention to structural and behavioral complexities that exist apart from the numerical ones [12].

With respect to structure, for instance, complex state is defined implicitly by declarative prop-

erties, in terms of sets, relations, and logical formulas. The Alloy Analyzer then serves as a model

finder in the mathematical sense, finding models of logical formulas. What this means in practice

is that fragments of scientific programs, existing or planned, can be put through their paces, with

input state automatically generated to drive the model into its corner cases, should they exist. Such

state might include, for instance, mesh topologies used in hurricane storm surge simulations, as

developed in prior work [11], or sparse matrix formats, the subject of this chapter.

In terms of behavior, operations are modeled as predicates that define transitions between states,

which are also defined declaratively. Nondeterminism may be employed as a means of expressing

concurrency [54] in models, which may be written in interleaving or noninterleaving styles. For

“stateful” algorithms that rely on mutation, Alloy has no fixed idioms, but a common approach is to

expand the arity of a “dynamic” relation by introducing a time column and imposing an ordering

on time. We later introduce a complementary approach that works well for matrices and similar

operations that rely on bounded iteration.

3.2.2 Correctness and Data Refinement

Our notion of conformance is based on substitutability. A computer program written in terms of

matrix computations, if correct, should remain correct if sparse matrix formats are used instead to

improve performance. The historical origins of data refinement begin with Hoare [42] and proceed

in two major veins—based on relational and predicate transformer semantics—with numerous

representative examples including Reynolds’ stepwise refinement of programs [69], Back and Mor-

gan’s refinement calculus [66], and Abadi and Lamport’s refinement mappings [2]. More recently,

Bolton [17] shows how data types in the Z notation can be translated into Alloy using an explicit

encoding that is able to find refinement mappings automatically.
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Figure 3.1 Refinement commuting diagram.

To verify sparse matrix formats and operations on them, we adopt a perspective common to

state-based formalisms, and use data refinement to show that a more detailed concrete system

can simulate a more abstract one. The diagram in Figure 3.1 shows abstract (A) and concrete (C )

domains with unprimed and primed terms that correspond to pre- and poststates, respectively,

of abstract (OPA) and concrete (OPC ) operations.1 A functional relation from concrete to abstract

domains, the abstraction function α, describes how states satisfying a concrete invariant I are

interpreted.

We say that a sparse matrix operation OPC conforms to an abstract one, OPA , if

I (C )∧OPC (C , C ′)∧α(C , A)∧α(C ′, A′)⇒OPA(A, A′) (3.1)

a safety property stating that nothing “bad” happens, a type of check well-suited to Alloy. To ensure

that something happens at all, a liveness property, is more difficult to formulate in Alloy since it

involves unbounded universal quantification over states, as we discuss in Section 3.6.

Abstract matrix operations, then, serve as a specification and are formulated declaratively using

Alloy’s set comprehension notation, as are abstraction functions. Sparse, concrete operations are

often stateful, and for those we use a new idiom for bounded iteration that has intuitive appeal and

an obvious relationship to code in imperative programming languages. Concrete invariants have a

direct use as heap invariants [45] that must be satisfied by implementing programs.

In subsequent sections, we present portions of Alloy models to illustrate our approach, noting

that complete models can be found online [1]. Also, although we introduce most major features of

the language as we go, it may be helpful for those unfamiliar with it to consult the Alloy language

reference, which is available online.2

3.3 Matrix Structure

Two commonly used sparse matrix formats are ELLPACK (ELL) and compressed sparse row (CSR),

which we introduce here, looking first at their structure. Figure 3.2 shows a matrix in dense, ELL,

and CSR formats.

1In subsequent sections, we drop subscripts A and C , in contexts where it is obvious, for operations and abstraction
functions. Alloy also supports this type of operator overloading.

2alloytools.org/download/alloy-language-reference.pdf
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Figure 3.2 A matrix in dense (a), ELL (b), and CSR (c) formats, with rows colored to show how elements are
stored across formats.

The ELL format, named for the ELLPACK library from which it originates, uses two two-dimensional

arrays, coef and jcoef, as seen in Figure 3.2b. The coef array stores matrix values and the jcoef

array stores column indices for the corresponding values in coef. The dimension of each array

is rows×maxnz, where maxnz is the maximum number of non-zero values in any single row of

the matrix. Rows that contain fewer than maxnz non-zero values are padded with placeholder

values—negative one in the jcoef array and zero in the coef array.

The CSR format offers further compression of the ELL format by removing the values used

for padding, as shown in Figure 3.2c. To do so, the coef array is flattened into row-major order to

produce the one-dimensional array A, and the same process is applied to the jcoef array to produce

JA. To access individual rows, an indexing array, IA, contains the starting location of each row within

the two arrays.

Turning to Alloy, matrix values and dense, ELL, and CSR representations are defined by the

signatures shown in Figure 3.3. A signature in Alloy introduces both a type and a set of uninterpreted

atoms, and may introduce fields that define relations over them. In addition to defining a type, a

signature’s name can also be used within an Alloy expression to denote the set of elements it defines.

Subtype signatures using extends introduce no new types but instead represent sets of elements

that are subsets of their parents, and the one keyword denotes a singleton subset.

Since Alloy provides no means of representing reals or floating point values, matrix elements are

modeled as some number of distinct non-zero values and zero, depending on scope size. The Value

and Zero signatures introduce the following subscripted, uninterpreted atoms:

Value = {Zero0, Value0, Value1, . . . , Valuen−2}

which are drawn from when a scope of size n is chosen for Value (since Zero is a subtype). This

simple approach suffices for representing the structural properties of matrices, and where more is

needed, arithmetic expressions can be built up and checked symbolically, as shown in Section 3.5.4

for matrix-vector multiplication.

Abstract state, from a refinement perspective, is defined by the Matrix signature, which includes

fields for the number of rows and columns and for dense storage. The vals field is a relation that

denotes a two-dimensional array, mapping row and column indices to values; the multiplicity
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sig Value { }
one sig Zero extends Value { }

sig Matrix {
rows , cols: Int ,
vals: Int→ Int→ lone Value

}

sig ELL {
rows , cols , maxnz: Int ,
coef: Int→ Int→ lone Value ,
jcoef: Int→ Int→ lone Int

}

sig CSR {
rows , cols: Int ,
IA, JA: Int→ lone Int ,
A: Int→ lone Value

}

Figure 3.3 Matrix structure in Alloy: signatures for values and matrices in dense, ELL, and CSR formats.

keyword lone (less than or equal to one) says there can be at most one such value for any index

pair. The combination of Alloy’s dot join and box join operators3 means that, for a matrix m, the i-j

element can be referred to as m.vals[i][j], and if its value is v, the tuple i→j→v is a member of the

m.vals relation.

For concrete state, the ELL and CSR signatures define their respective formats. In the ELL format,

coef and jcoef fields once again denote two-dimensional arrays, as before, and in the CSR format,

IA, JA, and A fields denote their respective one-dimensional arrays.

At this point, the collection of signatures defined in Figure 3.3 constitute a complete Alloy model.

For validation, the Alloy visualizer can be used to step through and inspect instances, either textually

or graphically, that are populated by atoms bounded by the individual scopes of the Value, Matrix,

ELL, and CSR sets. When doing this, some of the instances produced correspond to valid formats,

like those shown in Figure 3.2, and some do not. For instance, some Matrix instances have vals

with i-j indices out of bounds, some ELL instances have invalid column indices in jcoef, and so on.

Constraints on structure can be imposed in Alloy either as facts, which must always hold, or

as predicates, which the Analyzer can check. A concrete invariant for ELL, for instance, might be

defined as a predicate to see if it is maintained by an ELL operation, as we illustrate below.

3Alloy’s dot join operator, relational composition, generalizes the conventional syntax of classes and fields in object-
oriented languages. Box join mirrors dot join but with a syntax convenient for indexed lookup.
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3.4 Matrix Behavior

To describe dynamic behavior in Alloy, operations are defined as predicates, or relations between

states. Figure 3.4 shows examples of some basic predicates, along with assertions to check their

behavior.

The model fragment in the top half of Figure 3.4 begins with a predicate update, a basic operation

of the ELL format, which can be used to change a single value in the matrix—this might be a step

in element assembly or matrix construction operations that are either provided by libraries or

implemented by users. Parameters include pre- and poststate ELL matrices (e, e'), an index pair (i,

j) specifying an element of the matrices, and a new value (v) for the element in the poststate.

Within update, the first line acts as a precondition, or guard, so that pre- and poststates are related

only if indices are valid. An implication then makes use of helper predicates, depending on whether

the new value for v is zero (shown) or non-zero (not shown). Finally, a frame condition [18] is defined

by predicate sameDimensions: the number of rows and columns is unchanged in the transition. In

toZero, the expression k = e.jcoef[i].j uses relational join to determine the column of jcoef that

contains index j of row i, if it exists. The setAt predicate overrides the value of the i-k elements in

coef and jcoef. To show that update preserves the concrete invariant for ELL matrices (not shown),

an assertion preservesInvariant is provided.

The model fragment in the bottom half of Figure 3.4 defines the abstraction function α for ELL

matrices as a predicate, showing the (functional) relationship from concrete to abstract states. It

uses a set comprehension to define m.vals: for proper i-j pairs, the value v is in the column of

jcoef—denoted by k—that contains index j of row i, if it exists; otherwise v is zero. For bounded

sets of integer indices, an Alloy function named range is defined.4 A refinement check can then be

performed using updateRefines to show that the concrete update operation conforms to the abstract

one.

3.5 Matrix Computations

As outlined, the essential structure and behavior of sparse matrix computations can be modeled,

validated, and checked for conformance. When operations are simple enough, state transitions can

be defined declaratively in a straightforward manner using set comprehensions and other basic

elements of first-order logic and relational calculus. Operations like sparse matrix transpose and

translation between sparse formats, on the other hand, generally involve nested loop structure

and rely more commonly on mutation, a natural consequence of using imperative programming

languages. Below we describe a new idiom for this style of computation and present several examples

of verifying sparse matrix algorithms, including ELL to CSR translation, CSR transpose, and CSR

matrix-vector multiplication.

4We subsequently overload range so that it can accept two parameters: the first being an (inclusive) lower bound, the
second an (exclusive) upper bound.
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pred update [ e, e': ELL , i, j: Int , v: Value ] {
i→ j in indices [ e ]
v = Zero ⇒ toZero [ e, e', i, j ]

else toNonZero [ e, e', i, j, v ]
sameDimensions [ e, e' ]

}

pred toZero [ e, e': ELL , i, j: Int ] {
let k = e.jcoef [ i ] .j |

e'.jcoef = setAt [ e.jcoef , i, k, -1 ] and

e'.coef = setAt [ e.coef , i, k, Zero ]
}

assert preservesInvariant {
all e, e': ELL , i, j: Int , v: Value | I [ e ] and update [ e, e', i, j, v ] ⇒ I [ e' ]

}

pred α [ e: ELL , m: Matrix ] {
m.rows = e.rows

m.cols = e.cols

m.vals =
{ i: range [ e.rows ] , j: range [ e.cols ] , v: Value |

let k = e.jcoef [ i ] .j |
some k ⇒ v = e.coef [ i ] [ k ]

else v = Zero

}
}

fun range [ n: Int ] : set Int { { i: Int | 0 ≤ i and i < n } }

assert updateRefines {
all e, e': ELL , m, m': Matrix , i, j: Int , v: Value |

I [ e ] and α [ e, m ] and α [ e', m' ] and

update [ e, e', i, j, v ] ⇒ update [ m, m', i, j, v ]
}

Figure 3.4 Matrix behavior in Alloy: the ELL update operation and invariant check (above), and ELL ab-
straction function and refinement check (below).
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3.5.1 An Idiom for Stateful Behavior

To accommodate stateful algorithms in declarative languages, idioms are often devised to address

the so-called incremental update problem [43], such as state transformers [56] and lazy streams [44]

in functional programming, array comprehensions and accumulators in dataflow and single as-

signment languages [78, 67], and a relational view taken of sparse matrix computations as database

queries [51].

Although Alloy itself has no built-in notion of mutation, there are several techniques for modeling

it [46, 76]. One common approach—a local state idiom—adds a column to a relation to make it

“dynamic:” the addition serves as sort of a timestamp for the other columns in the relation. Then,

using one of Alloy’s built-in modules, a total ordering can be applied to the signature being used

as a timestamp. Another approach more common to other state-based formalisms—a global state

idiom—separates relations by placing them into different signatures based on whether they are

considered static or dynamic, and using dynamic signatures for the pre- and poststate parameters

of transition predicates.

For matrix computations, these approaches prove to be difficult to make work in practice because

of complex interactions between nested loop structure, conditionals, and the exact scopes used by

the ordering module. It is particularly important, then, to find idioms and design patterns for formal

methods, where possible, that accommodate particular domain needs and broaden their range

of applicability [41]. Here we describe a tabular idiom for the type of nested, bounded iteration

commonly found in matrix computations.

some iter: Int→ Int→ Int , x , y , . . .: Int→ univ {
table [ { i: ψ, j: ω | . . . } , iter ]
all i: ψ |

all j: ω |
let t = iter [ i ] [ j ] , t' = t.add [ 1 ] {

x [ t' ] = . . . x [ t ] . . .
y [ t' ] = . . . y [ t ] . . .
. . .

}
}

Figure 3.5 Tabular pattern for nested loops defining an iteration table (iter) and time-indexed scalar
variables (x , y ), whereψ andω define loop bounds.

Figure 3.5 illustrates the pattern for two nested loops, with boilerplate that controls iteration

over an innermost loop body. The existentially quantified expression binds an iteration table iter

and some number of dynamic variables, such as x and y (of univ type, the universal set), which are

indexed by an Int timestamp. The table predicate establishes the form and order of the table using

an argument that defines loop bounds as a binary relation, and to which a time column is added.

Time variables t and t' are used within the loop body to work with current and next values of the
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dynamic variables.

While the illustration above makes use of scalar dynamic variables, more complex types with

array-like indexing, for instance, can be represented by increasing the arity of the relation used to

represent the variable, as we later show.

3.5.2 ELL to CSR Translation

The need to translate between one sparse format and another may arise for a number of reasons,

including dependencies between formats and solvers, the relative differences in performance

between construction and other operations to be performed, and so on.

To translate between ELL and CSR formats, as an example, recall from earlier descriptions that

the CSR representation removes padding from rows that contain fewer than maxnz values in the

ELL format, as shown in Figure 3.2. To allow for this, a third array containing the start location for

each row, IA, is defined. The translation algorithm, shown in Figure 3.6a, loops through the coef and

jcoef arrays used in the ELL format, adding any non-zero values to the A and JA arrays used in the

CSR format. A variable kpos keeps track of the next available position in the CSR arrays. Once an

inner loop completes, the value of kpos is the starting location of the next row to be recorded in IA.

kpos← 0
for i in range(rows) do

for k in range(maxnz) do
if jcoef [i , k ] 6=−1 then

A [kpos]← coef [i , k ]
JA [kpos]← jcoef [i , k ]
kpos← kpos+1

IA [i +1]← kpos

(a)

kpos [ 0 ] = 0

all i: range [ e.rows ] | {
all k: range [ e.maxnz ] |

let t = iter [ i ] [ k ] , t' = t.add [ 1 ] |
e.coef [ i ] [ k ] != Zero ⇒ {

c.A [ kpos [ t ] ] = e.coef [ i ] [ k ]
c.JA [ kpos [ t ] ] = e.jcoef [ i ] [ k ]
kpos [ t' ] = kpos [ t ] .add [ 1 ]

} else

kpos [ t' ] = kpos [ t ]
c.IA [ i.add [ 1 ] ] = kpos [ end [ iter , i ] .add [ 1 ] ]

}

(b)

m

e c

α

e l l c s r

α

(c)

Figure 3.6 ELL to CSR translation: (a) pseudo-code, (b) fragment of Alloy model, and (c) commuting dia-
gram.
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Like other operations in Alloy, the translation from ELL to CSR formats is defined as a predicate:

pred ellcsr [ e: ELL , c: CSR ] { ... }

Using the tabular idiom, we distinguish between static and dynamic variables. The A, JA, and IA

arrays are static since their elements are set just once. The variable kpos, however, is dynamic, so

the following boilerplate is used ahead of the Alloy fragment shown in Figure 3.6b:

some iter: Int→ Int→ Int , kpos: Int→ Int {
table [ range [ e.rows ] → range [ e.maxnz ] , iter ]

which defines iter from the loop bounds and gives a binding for kpos, the only dynamic variable.

Because it is dynamic, kpos is indexed by time, and its current and next values are given by kpos[t]

and kpos[t'], respectively. When the conditional test e.coef[i][k] != Zero is false, the expression

kpos[t'] = kpos[t] serves as a frame condition for kpos. The function end in the last line of the Alloy

fragment obtains kpos at the end of an inner loop.

As shown in Figure 3.6c, the abstraction functions α for both the ELL and CSR formats are used

to determine correctness, which we check as follows:

I (e )∧ ellcsr(e , c )⇒ (α(e , m )⇔α(c , m )) (3.2)

where the expression is universally quantified over matrices in dense (m), ELL (e ), and CSR (c )

formats.

3.5.3 CSR Transpose

Matrix transpose swaps the row and column indices of a matrix, so its definition is straightforward

for a dense matrix representation. Using a set comprehension for the vals field of poststate m', the

transpose of m is:

{ j, i: Int , v: Value | i→ j→ v in m.vals }

which swaps i and j indices.

The CSR transpose algorithm is more involved. It consists of four phases: (1) compute row

lengths of the transpose, (2) set the starting location of each row in the IA array, (3) copy values and

indices into the A and JA arrays, using the content of IA as iteration variables (so IA is destructively

modified), and (4) right shift the content of IA one place, returning it to its state at the end of phase

2.

The algorithm uses two sets of arrays: A, JA, and IA arrays as input, and AO, JAO, and IAO arrays

as output. Focusing on just the third phase, shown in Figure 3.7a, the algorithm steps through rows

of the input matrix, determines the current column j , finds the starting position nxt of that column

in the output matrix using the IAO array, and updates those elements of the A and JA arrays. The

starting location of that column is then incremented in the IAO array for the next iteration.

For the Alloy model, a fragment corresponding to phase 3 is shown in Figure 3.7b, where we

once again distinguish between static and dynamic variables. The j and nxt variables are temporary
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for i in range(rows) do
for k in range(IA [i ], IA [i +1]) do

j ← JA [k ]
nxt← IAO [ j ]
AO [nxt]← A [k ]
JAO [nxt]← i
IAO [ j ]← nxt +1

(a)

all i: range [ c.rows ] |
all k: range [ c.IA [ i ] , c.IA [ i.add [ 1 ] ] ] |

let t = iter [ i ] [ k ] , t' = t.add [ 1 ] ,
j = c.JA [ k ] ,
nxt = iao [ t ] [ j ] {

c'.A [ nxt ] = c.A [ k ]
c'.JA [ nxt ] = i

iao [ t' ] = iao [ t ] ++ j→ nxt.add [ 1 ]
}

(b)

m m ′

c c ′

α α

t r a n s

t r a n s

(c)

Figure 3.7 CSR transpose, phase 3: (a) pseudo-code, (b) fragment of Alloy model, and (c) commuting
diagram.
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local variables, and the A and JA arrays are static since their elements are set just once. The iao array,

however, is dynamic, since the j element is accessed and modified in each step of the inner loop.

The following boilerplate is used:

some iter: Int→ Int→ Int , iao: Int→ Int→ Int {
table [ { i: range [ c.rows ] ,

k: range [ c.IA [ i ] , c.IA [ i.add [ 1 ] ] ] } ,
iter ]

which defines iter from the loop bounds and gives a binding for an (intermediate) iao array, the

only dynamic variable, as a ternary relation, since it is indexed by time. In this case, the inner loop

variable k depends on the outer loop variable i, as shown in the set comprehension that builds the

iteration table. To update array iao in the inner loop body, Alloy’s relational override operator (++) is

used.

As illustrated in Figure 3.7c, the concrete CSR transpose operation can be shown to conform to

the abstract one, which we check as follows:

I (c )∧ trans(c , c ′)∧α(c , m )∧α(c ′, m ′)⇒ trans(m , m ′) (3.3)

where the expression is universally quantified over matrices in dense (m , m ′) and CSR (c , c ′) formats.

3.5.4 CSR Matrix-Vector Multiplication

Sparse matrix-vector multiplication is a basic step in linear and eigenvalue solvers, and is therefore

central to many scientific and engineering applications.

With respect to loop structure, the computation A x is an independent series of dot products,

one for each element of b , the result vector. Because incremental updates are not required in the

computation, both dense and sparse algorithms can be expressed as set comprehensions, and there

is little need for the tabular idiom we define.

To check conformance, however, elements of the resulting vectors must be shown to be equiva-

lent, which effectively calls for a comparison of symbolic expressions. Instead of building general

machinery for doing so,5 however, we take a lightweight approach and model an ordered sum of

products as a relation.

The SumProd signature defines this particular kind of symbolic expression as a ternary relation

of integers and value pairs, as shown below and illustrated in Figure 3.8a.

sig SumProd { vals: Int→ lone Value→ Value }

In the vals relation, each pair of values represents a product of scalar values, and the entire

relation defines the sum of the products. An index associated with each pair corresponds to its

position in the associated input vectors.

5See, for instance, the work of Siegel et al. [72], who build symbolic expression tables for checking real, IEEE, and
Herbrand equivalence of general symbolic expressions using the Spin model checker.
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j p q

0 Ai ,0 x0

1 Ai ,1 x1

2 Ai ,2 x2

...
...

...
(a)

Dot product b [i ] for dense storage, matrix m , sequence x :

{ j: Int , p, q: Value -Zero |
j in range [ m.cols ] and p = m.vals [ i ] [ j ]

and q = x [ j ] }

(b)

Dot product b [i ] for CSR storage, matrix c , sequence x :

{ j: Int , p, q: Value -Zero |
some k: range [ c.IA [ i ] , c.IA [ i.add [ 1 ] ] ] |

j = c.JA [ k ] and p = c.A [ k ]
and q = x [ c.JA [ k ] ] }

(c)

m

c b

α m v mx

m v mx

(d)

Figure 3.8 Matrix-vector multiplication: (a) sum of products for row i of matrix A and vector x , (b) dense
dot product in Alloy, (c) CSR dot product in Alloy, and (d) commuting diagram.

To model matrix-vector multiplication, then, the result vector b is represented as a sequence of

SumProds. A basic step in the algorithm that computes dot products is shown Figs. 3.8b and 3.8c for

matrices in dense and CSR formats, respectively. In both cases, each product pair p-q is comprised

of non-zero values (Value-Zero) to facilitate a comparison of expressions.

As illustrated in Figure 3.8d, the concrete CSR matrix-vector multiplication operation can be

shown to conform to the abstract one, which we check as follows:

I (c )∧m v m (c , x , b )∧α(c , m )⇒m v m (m , x , b ) (3.4)

where the expression is universally quantified over matrices in dense (m) and CSR (c ) formats, and

input (x ) and result (b ) vectors.

3.6 Discussion

To perform the analyses, Alloy provides a number of SAT solvers. For simulation, we use MiniSat [73],

an incremental SAT solver from Chalmers University of Technology, Sweden, and for checking,

Lingeling [16] from Johannes Kepler University, Austria. All experiments are performed on a 3.5-

GHz-Intel-Core-i7 desktop computer.

By default, Alloy uses a scope of size 3 for signatures and a bitwidth of 4 for integers (i.e., from−8

to 7, inclusive). For values, that means two distinct non-zero values and zero. For matrices, which

have integer indices, that means a size of 7×7 for dense storage, for instance.

When using default scopes, simulations in Alloy are produced instantaneously, as are coun-

terexamples when checking assertions, indicating, for instance, array referencing and indirection

problems; matrices as small as 2×2 and smaller are typically sufficient. For successful checks, most
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are completed in a matter of seconds or under a minute, with the longest being the refinement

check for CSR transpose, which takes a couple of hours. In practice, we often use smaller matrix

sizes and larger numbers of distinct values.

In terms of limitations of the approach, because only safety is being checked, operations can

“do nothing” and still be considered correct, e.g., as a result of inadvertent overconstraint. Ensuring

liveness with Alloy is more difficult because the form of the check requires an unbounded universal

quantification over states, as in the following:

I (c )⇒∃ c ′ | trans(c , c ′) (3.5)

which asserts that every CSR matrix c satisfying its invariant has a transpose. In practice, the appli-

cability of operations can be spot-checked using Alloy’s simulator and, for small scopes, generator

axioms [46] can be used to populate terms in the poststate.

Because correctness is based on conformance with abstract operations, which serve as a spec-

ification, validation is particularly important. Beyond just simulation, we find it helpful to check

properties of those operations that should hold. For example, the abstract transpose operation is

functional and deterministic, eliciting the following check:

I (m )∧ trans(m , m ′)∧ trans(m , m ′′)⇒ eqv(m ′, m ′′) (3.6)

When first defining the operation, we inadvertently swapped row and column sizes in the poststate,

resulting in nondeterminism that was detected in this manner.

3.7 Related Work

Earlier we cite the studies of Arnold et al. [7] and Kotlyar et al. [51], both of which have compilation

of sparse matrix codes as their primary objective. Beyond program synthesis, Arnold et al. also take

up verification because of its potential role in discovering new formats via inductive synthesis. They

write: “We are not aware of previous work on verifying full functional correctness of sparse matrix

codes. We are not even aware of work that verified their memory safety without explicitly provided

loop invariants.”

To verify sparse matrix codes, Arnold et al. design a “little language" (LL) that can be used to

specify programs as sequences of high-level transformations on lists. The models are then trans-

lated automatically into Isabelle/HOL for verification. The authors verify sparse matrix-vector

multiplication operations on jagged diagonals (JAD), coordinate (COO), and sparse CSR (SCSR)

formats.

In quantifying proof rule reuse, they find that “on average, fewer than 19% of rules used by a

particular format are specific to this format, while over 66% of these rules are used by at least three

additional formats, . . . .” They note, however, that format-specific rules are harder to prove, and

believe they can be refactored to increase reuse and improve automation.
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3.8 Conclusions

We describe a state-based approach for reasoning about the structure and behavior of sparse

matrices. Though declarative, the models resemble imperative programs, sharing basic elements

like array indirection and loop structure, with the latter made possible by a new idiom for stateful

algorithms. Concrete invariants developed and checked are also directly usable for implementations

in conventional languages. The study can be viewed, in a way, as an evaluation of state-based formal

methods in the context of scientific computing.

The experience has been positive for our group—to the extent that we now use Alloy to spot

check the kinds of numerical codes we work with and develop, both in Fortran and C++. It is

straightforward to extract program fragments, model them in Alloy, and check a property of interest.

Although we have yet to find bugs in existing code, we have found errors in documentation: misstated

or at best ambiguous properties that do not hold in software.

Work with Alloy is proceeding in two major directions: applications and tool support. On the

latter, we are developing a framework for sharing and visualizing Alloy instances that includes

support for domain-specific customization, with spatial layouts that can accommodate planar

embeddings of finite element meshes and matrices of various dimensions. We also imagine but

have not implemented a layer of syntactic sugar that could reduce some of the boilerplate needed

to express bounded iteration. With respect to applications, we are looking at more complex sparse

matrix formats and parallelization, adding meshing and assembly concerns for hybrid and element-

by-element solvers, and incorporating moving patches [4] and other types of adaptivity in finite

element meshes.
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CHAPTER

4

STERLING: A WEB-BASED

INTERFACE FOR ALLOY

4.1 Introduction

Model finding tools like Alloy [46] enable a lightweight approach to design and reasoning about

complex software systems. Such tools provide push-button analysis for both checking assertions

within bounded scopes, and for generating instances that satisfy a property of interest. An attractive

feature of Alloy is the immediate feedback provided by visualizations, allowing users to inspect

instances and counterexamples in order to identify design problems. The ability to communicate vi-

sual information intuitively therefore plays a key role in determining the effectiveness of interactions

with the user [34].

The Alloy Analyzer includes a visualizer that can display an instance as a directed graph, and

basic properties of the graph such as labels, visibility, color, and shape can be customized manually

or by using themes. This customizability, in combination with interactive features such as the ability

to manually reposition graph nodes, allows the user to edit the initial visual representation created

by Alloy so that they can better understand the instance. Despite these features, certain limitations

of the visualizer make it difficult to use as instances increase in size and complexity. In particular, our

experience using Alloy in the field of scientific computing has highlighted the need for a visualization

approach capable of expressing spatial relationships—not just topological ones—and maintaining

consistency in those relationships when dynamic updates occur. This chapter describes a web-based

visualization interface for Alloy called Sterling, whose development has been motivated by a need

for more expressive visualizations in the context of modeling scientific software. Not just limited to
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the scientific domain, broader discussions among participants at the 2018 Workshop on the Future

of Alloy reinforced the need for a more flexible and versatile approach.

This chapter is organized as follows. In Section 4.2 we demonstrate to the reader why a new

visualization approach is needed and how Sterling fills this role. To do so, we introduce both Alloy

and Sterling visualizations side-by-side while developing a simple model. By building the model

in a series of incremental additions, we demonstrate how shortcomings of the existing visualiza-

tions become more apparent as the model becomes more complex, and how Sterling supports the

iterative process by addressing these shortcomings. Furthermore, we present relevant details of

the Alloy language, where appropriate, for readers who are not familiar with the Alloy language. We

then proceed to describe the technical details of the Sterling implementation in the following two

sections. In Section 4.3 we describe in some detail the Alloy Visualizer and discuss approaches in the

literature that identify and address its limitations. These approaches help to shape our own design

goals, outlined in Section 4.4. We then present implementation details for Sterling, discussing how

implementation decisions were driven by our design goals, and how they address limitations of the

existing Alloy visualizations.

4.2 Model Building in Alloy With Sterling

This section describes the incremental construction of a small model, with a special focus on the

visual feedback provided by Alloy and supported by Sterling. The example chosen should be familiar

to most readers, particularly those with a background in science or engineering: a two-dimensional

matrix representation and associated operations. We approach the design of this model with the

intent that it will subsequently be used to model and verify sparse matrix formats—those that

attempt to optimize storage and performance by removing zeroes—as we have done in Chapter 3.

Indeed, the steps taken and the instances displayed here reflect our experience developing those

models.

In the second chapter of Software Abstractions [46], the de facto Alloy reference written by

its creator, Daniel Jackson introduces Alloy in a “Whirlwind Tour”, describing the incremental

construction and analysis of an email client’s address book. This tour gives readers a good sense for

what it is like to explore software design using Alloy without delving into the details of the language.

In this section we mirror Jackson’s approach, introducing Sterling alongside Alloy.

By developing the model in a series of incremental additions, we demonstrate not only the

lightweight and iterative approach that is typical of Alloy, but also the complexity that can arise

in the visual feedback it produces in some scenarios, even on simple models. In doing so, we give

the reader a sense of what it is like to incrementally build a model, and how the enhanced visual

feedback provided by Sterling further facilitates this iterative approach that is so important in model

building. While elements may seem simple at the beginning, this initial effort lays the foundation

for the analysis of more complex artifacts in engineering and scientific domains.

To familiarize the reader with Alloy and Sterling we first introduce the user interface of each in
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Section 4.2.1. We then start with a model of matrix structure in Section 4.2.2. We introduce basic

concepts of the Alloy language, discuss how visualizations fit into the iterative design process, and

demonstrate how Sterling can be used to create domain specific visualizations. We expand the model

in Section 4.2.3 by introducing dynamic behavior, showing how to model an update operation and

demonstrating how Sterling addresses limitations of Alloy visualizations of dynamic operations

specifically. In Section 4.2.4 we use a composite design pattern to enable differentiation of zero

and nonzero values and explore visualization methods for compound graphs. Finally, we introduce

execution traces using a completed model of a sparse matrix format and operation in Section 4.2.5.

This section demonstrates both the flexibility of the approach and the important role that Sterling

plays in facilitating an iterative approach to modeling.

4.2.1 The Alloy and Sterling User Interfaces

At the core of the lightweight and incremental spirit of Alloy is its IDE, which brings together a model

editor, the Alloy Analyzer, and the Alloy Visualizer. Models are built up incrementally in the model

editor, and the Alloy Analyzer is used to perform simulations and check properties along the way.

Instances and counterexamples generated by the Analyzer are then displayed in the Alloy Visualizer,

providing instant, visual feedback that can be used in turn to inform the continued development

of the model. Sterling itself is a web-based visualizer that extends the functionality of the Alloy

Visualizer. Instances and counterexamples generated by the Alloy Analyzer can be viewed in the

Alloy Visualizer, in Sterling, or both. As shown in the coming sections, each has its own strengths,

and so the choice of visualizer typically depends on the needs of the modeler.

Figure 4.1a shows a complete model in the Alloy IDE. The window is split into two panes—the

left pane is the model editor and the right pane displays messages generated by the Alloy Analyzer. In

this example, the run showMatrix command has been executed, and the Analyzer has produced an

instance—an assignment of values to the model’s variables—that satisfies the model’s constraints.

The Alloy Visualizer, in Figure 4.1b, is opened automatically when an instance is found, and we can

explore the instance data in any of the four views, accessible via named buttons in the Visualizer

toolbar: Viz, Txt, Table, and Tree. Here, the Viz or “Graph” view displays the instance as a directed

graph.

The same instance can also be visualized in Sterling’s Graph View, as shown in Figure 4.1c. Graph

and Table Views extend the functionality of the corresponding views in Alloy, and the Script View is

used to create domain specific visualizations. Sterling can be opened from the Alloy Visualizer by

clicking the “Web” button, or in a web browser by navigating to http://localhost:4000. Mirroring the

Alloy Visualizer’s interface, views are accessible via named buttons in the toolbar: Graph, Table, and

Script.

As demonstrated in upcoming sections, writing models in Alloy is an iterative process. We write

a small portion of the model, ask the Analyzer to generate an instance or check some property,

and then use the results of the analysis to make modifications to the model. A model like this

one will have likely undergone multiple iterations of writing model code and generating instances
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(a)

(b) (c)

Figure 4.1 Components of the Alloy user interface: (a) the Alloy IDE, (b) the Alloy Visualizer, and (c) Ster-
ling.
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before reaching this point. We will also see that a small model does not necessarily produce small

instances and that while the Alloy Visualizer is well-suited to display relatively small instances, its

visualizations can become cumbersome and difficult to interpret as instances grow in size and

models grow in complexity.

4.2.2 Structure

We begin with a model of matrix state.

sig Value { }
sig Matrix {

rows , cols: Int ,

vals: Int→ Int→ lone Value

}

This model defines the complete state—the variables to which values may be assigned—that is

needed to represent a matrix. It introduces two signatures, Value and Matrix. Signatures in Alloy

introduce sets of objects called atoms. Atoms are the basic building blocks of our model: a Matrix

atom represents a matrix and a Value atom represents a value that can reside in a matrix. Atom

names never appear in Alloy models themselves, rather the Alloy Analyzer populates sets with atoms

when it generates an instance or counterexample. For example, an instance of this model could be

populated as follows.

Value= {Value$0}

Matrix= {Matrix$0}

Int= {−4,−3,−2,−1, 0, 1, 2, 3}

Where Value$0, Matrix$0, and the integers in the range [−4, 3] are atoms. Alloy has native support

for integers, which are included in the “Int” set by default in every model. The set of integers is

limited by the scope of the analysis, where the scope setting gives the maximum bit-width for

integers—here it is set to 3, so the set includes integers in the range [−4, 3]. Alloy does not support

floating point values.

To introduce structure to the model, we relate atoms using fields. The Matrix signature has three

fields: rows, cols, and vals. The rows and cols fields, which map matrices to integers, represent

the number of rows and columns in a matrix. The vals field is a four-way mapping, containing the

tuple m→i→j→v when the matrix m contains the value v at the index (i, j). It is often helpful to

think of a field as a table, populated by atoms, in which the order of the columns matters but the

order of the rows does not. For example, using the sets defined above, a 2×2 matrix would look like

the tables in Table 4.1.

One may wonder why we use a signature to represent matrix values instead of integers. Consider-

ing that this model will be used to verify sparse matrix format, we will need to be able to distinguish

between zero and nonzero values. While this is possible using Alloy’s integers, we note that integers
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rows
Matrix Int

Matrix$0 2

cols
Matrix Int
Matrix$0 2

vals
Matrix Int Int Value

Matrix$0 0 0 Value$0
Matrix$0 0 1 Value$0
Matrix$0 1 0 Value$0
Matrix$0 1 1 Value$0

Table 4.1 Fields of the matrix model, interpreted as tables, populated by a 2×2 matrix.

are also used in the vals field to represent matrix indices and in the rows and cols fields to represent

matrix dimensions. As such, a separate signature for matrix values gives us fine grain control over

the scope of possible values without the need to consider unintentional side effects that could limit

the size of matrices that can be represented by the model.

Currently this model does not contain any commands, and so there is no way to perform analysis

or explore states. To do the latter, we introduce a predicate—a named, reusable constraint—and a

command to find an instance, an assignment of values to variables.

pred showMatrix { }
run showMatrix for 3

Executing the “run showMatrix for 3” command instructs the Alloy Analyzer to search for instances

that satisfy the showMatrix predicate and will limit the number of atoms of each signature to a

maximum of 3. For now the showMatrix predicate is empty so we can explore the unconstrained

state space. Running the command produces the instance in Figure 4.2.

Figure 4.2 An unconstrained instance of the matrix model in the Alloy Graph View.

In the Graph View, instances are displayed as directed graphs in which graph nodes represent

atoms and labelled edges connecting nodes represent the tuples of a relation. For relations with

arity greater than two, such as the vals relation, the first and last atoms in a tuple are connected by

an edge and the intermediate ones are displayed in brackets in the edge label.

This graph is projected over the Matrix signature, as indicated by the message in the toolbar to

the right of the “Next” button. Projection is a feature of the Graph View that is used to display an
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instance from the perspective of an atom or set of atoms. For each projected signature, the user

chooses a single atom from that signature over which to project; here the Matrix0 atom is selected

in the dropdown menu below the graph. For each relation that includes a projected signature, the

column that contains the signature is moved to the front of the relation. Then, for each atom that

appears in the first column, the tuples that begin with that atom are associated with the atom, but

with that atom removed. By projecting over the Matrix0 atom, the vals relation includes only tuples

that begin with Matrix0, but with Matrix0 removed. Under this projection, then, the vals relation is a

three-way mapping (Int→Int→Value) rather than a four way mapping (Matrix→Int→Int→Value).

Similarly, the rows and cols relations have been reduced from binary relations to unary ones. A

unary relation is displayed as a label on each atom that belongs to the relation—the (cols) label

indicates that the 7 atom is in a tuple of the cols field, and the (rows) label indicates that the 1 atom

is in a tuple of the rows relation.

This graph shows that the model is underconstrained, meaning that while the instance satisfies

the constraints of the model, it does not necessarily represent a realizable matrix. In this instance,

the Matrix0 atom represents a 1×7 matrix but contains 156 values, as indicated by the key at the

top-left of the graph which shows the size of vals relation. Furthermore, edges connecting negative

integers to the Value0 atom, such as the edge labeled “vals[-5]” connecting the -8 atom to Value0,

indicate that negative integers are used for matrix indices.

Because we have not constrained the model, the Alloy Analyzer is free to assign any correctly

typed values to the model variables. Clicking the “Next” button in the toolbar instructs the Alloy

Analyzer to generate another instance with a different set of values, and doing so generates many

similarly unconstrained instances. The particular assignment of values to variables in an instance

will vary depending on the Alloy preferences and is highly dependent on the solver being used.

Based on the underconstraints identified above, we introduce the following constraints to the

model: (1) all matrix indices must be non-negative integers, (2) the number of rows and columns

must be non-negative, and (3) the total number of values in a matrix is equal to the product of the

the number of rows and columns. Rather than add the constraints to the showMatrix predicate, we

take a more modular approach and create a new predicate, I (short for “Invariant”), that takes a

matrix as an argument, and “invoke” it from showMatrix.

pred I [ m: Matrix ] {
m.rows ≥ 0

m.cols ≥ 0

all i: m.vals.Value.Int | i ≥ 0

all j: m.vals.Value [ Int ] | j ≥ 0

#m.vals = mul [ m.rows , m.cols ]
}

pred showMatrix {
all m: Matrix | I [ m ]

}
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Running the command again now gives the instance in Figure 4.3. In this instance all indices are

positive, the matrix has 6 rows and 1 column (as indicated by the placement of the “rows” and “cols”

labels) and there are 6 tuples in the vals relation. At first glance this may appear to represent a valid

matrix, but further inspection reveals that certain index pairs, such as (1, 7), fall outside the bounds

of a 6x1 matrix.

Figure 4.3 An instance of the matrix model constrained by the I predicate, shown in the Alloy Graph View.

Already we see certain limitations of the Alloy graph view. Even though our model is small, the

first instance generated was cluttered with edges. Atoms can be manually repositioned to make the

graph more readable, but their movement is restricted to the rows in which they are initially placed.

Adding constraints reduced the size of the instance and made the graph more readable, as we saw

in the second instance, but individual edges are still difficult to interpret. Tuples of arity higher than

two, like those in the vals relation, do not have a natural visual representation in a directed graph,

so their atoms are split between graph nodes and labels.

But more than that, it is not clear how the topological relationships of the graph translate to the

spatial relationships of a two-dimensional matrix. We must inspect each graph edge individually

to verify that the matrix indices are properly assigned; for small matrices this is easy to do, but the

process becomes tedious as Alloy generates larger ones. This is a particularly common theme, we

have found, when modeling scientific software. The basic character of physical and other natural

processes suggests that special attention must be paid to spatial relationships, not just topological

ones.

We turn to Sterling to create visualizations that more clearly express these spatial relationships.

Scripts written in the Script View are executed in an JavaScript environment that contains, as global

variables, the instance, a rendering stage, and access to a large ecosystem of JavaScript libraries. The

script in Figure 4.4 displays the tuples of the vals relation as labelled squares. The position of each

square is determined by the index pair and the label corresponds to the Value atom. The bounds of

the matrix are displayed as a bolded rectangle.

In the image generated by the script, the spatial relationships are immediately clear, revealing

that only a single tuple in vals represents a valid value in a 6x1 matrix. When stepping through
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Figure 4.4 An instance of the matrix model constrained by the I predicate, shown in the Sterling Script
View.

instances by clicking the Next button, the script is automatically rerun and a new image is generated

each time; this shows many instances in which values are not placed within the bounds of the

matrix.

So we rewrite the I predicate to constrain the set of integer pairs that appear in a matrix based

on its dimensions. In this way, we specify the total number of values and the allowable index pairs

using a single expression.

pred I [ m: Matrix ] {
m.rows ≥ 0

m.cols ≥ 0

m.vals.univ = range [ m.rows ] → range [ m.cols ]
}

−− t h e s e t o f i n t e g e r s such t h a t f o r e v e r y i n t e g e r i , 0 ≤ i and i < n

fun range [ n: Int ] : set Int {
{ i: Int | 0 ≤ i and i < n }

}

Alloy functions are named expressions; here we introduce the range function which generates a

set of non-negative integers within a specified range. The expression range[m.rows]→range[m.cols],

using the arrow product, creates a set of tuples that contains every combination of row and column

index values. We rerun the command, generating and exploring instances to visually verify that the

new constraints describe valid matrices. In Figure 4.5 we compare Alloy visualizations in the left

column with the corresponding Sterling visualizations in the right column.

This sequence of images conveys the role of Sterling in the iterative design process. If we imagine

stepping through instances with only Alloy visualizations, we see that significant effort is required

to interpret the display and look for design errors. The Sterling visualizations, on the other hand,
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Figure 4.5 A variety of matrix instances displayed in the Alloy Graph View (left) and the Sterling Script View
(right).
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match the structure of a matrix and so design errors are highlighted more effectively. Not only that,

but because interpretation is quicker, we can explore more instances and are therefore more likely

to encounter one that exposes a case we may not have considered.

As the model continues to grow, so will the visualization script. In practice we have found that

model building and script building complement each other well; the upfront cost of updating a

script when a model has changed tends to be offset by the speed with which visualizations are

interpreted and the number of instances that can be explored.

4.2.3 Behavior

We continue building our model by describing an update operation.

pred update [ m, m': Matrix , i, j: Int , v: Value ] {
let u = m.vals [ i ] [ j ] |

m'.vals = m.vals - i→ j→ u + i→ j→ v

}

The update predicate, like the I predicate, defines a constraint. In this case, however, the constraint

describes dynamic behavior. Its arguments are a matrix before the update (m), the matrix after the

update (m’), the row and column indices that are updated (i, j), and the new value (v). The constraint

states that the set of values in the matrix after the update occurs is equal to the set before the update

with the value at location (i, j) replaced by the new value, v.

This method of describing an operation is declarative and so there is no explicit mutation. Rather,

two matrices are created and the effect of the operation is captured by relating them. The Alloy

Analyzer, then, can check whether an operation is valid by comparing the before and after states.

Contrast this with an imperative language, in which a procedure is operational and describes how

to produce changes by modifying state.

To simulate the update operation we could run the command “run update for 2” and Alloy would

generate an instance that satisfies the update predicate. We note, however, that the I predicate is not

included as a constraint and so the operation could be applied to an invalid matrix. Rather than add

I to the update predicate itself, we instead create a new predicate. This is a more modular approach

that creates a clear distinction between behavioral and stateful constraints.

pred showUpdate {
some m, m': Matrix , i, j: Int , v: Value |

I [ m ] and update [ m, m', i, j, v ]
}
run showUpdate for 3 but 2 Matrix

The showUpdate predicate “invokes” the update predicate and uses the I predicate to ensure

that the matrix representing the initial state is valid. Matrix scope for the showUpdate command

is limited to two, for the pre-state (the state of the matrix before the update operation) and the

post-state (the state of the matrix after the update operation).
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Figure 4.6 compares the Alloy (left column) and Sterling (right column) Graph Views of the

instance generated by this command. Each column shows the pre-state above and the post-state

below. Examining the graph, we can determine which value in the matrix has been updated. The

labels $showUpdate_i, $showUpdate_j, and $showUpdate_v indicate which atoms are used as

arguments to the update predicate. Comparing the edge sets we see that the edge “vals[0]” connects

the “0” atom to the “Value$0” atom in the pre-state but connects it to the “Value$1” atom in the

post-state. So, in this instance, the matrix has been updated with the value “Value$1” at index (0, 0).

Figure 4.6 A dynamic operation displayed in the Alloy (left) and Sterling (right) Graph Views. In each, the
pre-state is above the post-state.

This comparison of the Alloy and Sterling graphs highlights differences in the positions of

graphical elements. In both Alloy and Sterling, only a single state is displayed at a time, and the user

can manually toggle back and forth between states to make comparisons. In Alloy (left column),

the graph layout for each state is calculated independently to minimize edge crossing, and so the

positions of atoms are not guaranteed to be consistent when toggling back and forth. We see that this

is the case here—the “0” and “1” atoms have switched positions, as have the “Value0” and “Value1”

atoms. Compare this with Sterling (right column), where the layout of atoms is consistent between
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the two states. When toggling back and forth, then, differences between the two are highlighted.

The graph view is an indispensable tool for interpreting Alloy instances, particularly in the early

stages of developing a model when instances tend to be relatively small. As dynamic operations

are introduced, especially those that span many states, spatial inconsistencies in the Alloy Graph

View can make instances difficult to interpret. And while the Sterling Graph View addresses this

shortcoming, among others, the directed graph representation can become difficult to use as the

model grows, and a more appropriate visual abstraction may be more useful, just as we saw in

SECTION(statics).

In fact, we can visualize the update operation using the script from SECTION by projecting over

the Matrix signature in the Sterling Script View. In doing so, we can toggle back and forth between

the pre- and post-state matrices, shown in Figure 4.7.

Figure 4.7 A dynamic operation displayed in the Script View (pre-state above, post-state below).

This instance shows a valid matrix update, but it is entirely possible that the Alloy Analyzer hap-

pened to choose an instance of a valid update operation despite the model being underconstrained.

Rather than stepping through instances to manually look for design errors, we make an assertion

about how the update operation behaves.

assert updateValid {
all m, m': Matrix , i, j: Int , v: Value |

I [ m ] and update [ m, m', i, j, v ] ⇒ I [ m' ]
}

An assertion is a constraint that is intended to be valid. In other words, it is a constraint that we

expect to hold true in all cases. This one states that if the update operation is applied to a valid matrix,

the resulting matrix will also be valid. To check the assertion, we issue the following command to

the Analyzer:

check updateValid for 3 but 2 Matrix

This instructs the Analyzer to search for a counterexample—a scenario in which the assertion is

violated—and indeed it finds one, shown in Figure 4.8. Again we show the Alloy visualization in the

left column and the Sterling script-generated visualization in the right column.
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Figure 4.8 A counterexample displayed in the Alloy Graph View (left) and the Sterling Script View (right). In
each, the pre-state is above the post-state.

Just as in SECTION(statics), this comparison demonstrates the importance of expressing spatial

properties embedded throughout the model, not just topological ones. In this case, the Graph View

gives little insight into how the model is underconstrained, but the Script View clearly shows that

the dimensions of the matrix have changed. Because we don’t explicitly state in the update predicate

that the dimensions of the matrix do not change as a result of the operation, the Analyzer is free to

do exactly that. So we update the predicate to include this constraint.

pred update [ m, m': Matrix , i, j: Int , v: Value ] {
let u = m.vals [ i ] [ j ] |

m'.vals = m.vals - i→ j→ u + i→ j→ v

m'.rows = m.rows

m'.cols = m.cols

}

Executing the check finds another counterexample, shown in Figure 4.9.

Again the Script View shows what the Graph View cannot: that the indices of the update operation

fall outside the bounds of the matrix. Note that the Graph View is so cluttered with edges that it isn’t

possible to see the addition of a tuple to the vals relation. Again we update the predicate with an

additional constraint.

pred update [ m, m': Matrix , i, j: Int , v: Value ] {
i in range [ m.rows ]
j in range [ m.cols ]
let u = m.vals [ i ] [ j ] |

m'.vals = m.vals - i→ j→ u + i→ j→ v

m'.rows = m.rows

m'.cols = m.cols
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Figure 4.9 A counterexample displayed in the Alloy Graph View (left) and the Sterling Script View (right). In
each, the pre-state is above the post-state.

}

Executing the check now finds no counterexample. The assertion may still be invalid, though,

since the Analyzer only considered matrices up to size 7x7 containing at most 3 different values. So

we increase the scope to check more cases. There’s no point considering more than two matrices,

but we allow 10 values and larger matrices by increasing the Integer scope explicitly.

check updateValid for 10 but 2 Matrix , 6 Int

Executing this command takes a bit longer, just under a minute on a desktop computer, as there

are more cases to consider. By increasing the Int scope to 6, we’ve instructed the Analyzer to use

integers in the range [-32, 31]. This check, then, has confirmed that for all possible matrices up to

size 31x31, the update operation is valid. Not only that, but for every matrix size checked, it has

considered every possible way to populate the matrix with up to 10 different values. Given that for

the 31x31 matrix alone there are 10961 possible combinations, we can begin to see why this kind of

analysis is more effective than testing. The Analyzer does not, of course, construct and test each

case individually, but instead relies on pruning the tree of possibilities to rule out large subspaces

without examining them fully. And while we have not proven that the assertion is valid, our intuition

tells us that it is unlikely for a problem to exist that cannot be shown using a matrix size up to 31x31.

Now that the Analyzer finds no counterexamples we may wish to visually verify our model once

more. As a final update to our script, we now highlight the value that is updated so that we can more

easily see the effect of the operation. The sequence of images in Figure 4.10 shows two instances. In

each we’ve included the pre- and post-states in Alloy (left), the Sterling Graph View (center), and the
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Sterling Script View (right).

Figure 4.10 A comparison of the Alloy Graph View (left), the Sterling Graph View (center), and the Sterling
Script View (right). Two instances are displayed, each with the pre-state of the update operation above and
the post-state below.

4.2.4 Classification Hierarchy

With the matrix structure and update operation modeled, we now consider matrix sparsity. The

intent is to model a sparse matrix format and to use the model we just created to verify that the

implementation is correct. To perform verification, we use data refinement to show that the more
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detailed concrete sparse matrix format can simulate the more abstract dense matrix representation.

To show that a dense matrix and sparse matrix representation are equivalent, we will of course need

to be able to distinguish between zero and nonzero values. In this section we demonstrate how to

expand the model to support this requirement and discuss the visualization challenges that are

introduced in turn.

Currently we use the Value signature to represent any numerical value in a matrix, zero included.

As it stands, we could simply interpret a specific Value atom, perhaps the one labelled Value$0, as zero

when interpreting an individual instance. This approach, however, gives us no way to distinguish

zero from nonzero values in the model proper, and so we cannot guarantee that zero will not be

included in the models of our sparse formats. So instead, we extend Value to introduce the Zero

signature.

sig Value { }
one sig Zero extends Value { }

sig Matrix {
rows , cols: Int ,

vals: Int→ Int→ lone Value

}

By using the extends keyword, we introduce Zero as a subset of Value. This means that Zero is a

Value, and can be used anywhere a Value is used. The keyword one indicates that there is exactly

one atom in the Zero set. So, depending on the scope, the complete Value set will look like

{Zero,Value0,Value1,Value2}

Figure 4.11 shows a model diagram, a graphical representation of the model’s declarations,

generated by the Alloy Analyzer. Note that the vals field still maps Matrices to Values, and that Zero

is an extension of Value.

Figure 4.11 A model diagram depicting the matrix model.
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Now we can rerun the commands in our model to check assertions and generate instances that

include Zero in our matrices. Executing the “check updateValid” command reveals that there are

still no counterexamples, and executing the “run showMatrix” command gives us the instance in

Figure 4.12, a 2x2 matrix that contains two zeros and two nonzero values.

Figure 4.12 An instance of the matrix model with zero and nonzero values.

The Graph View, as we have seen, displays the topological relationships created by our model’s

fields. A node is created for each atom, and arcs are drawn for each tuple connecting the nodes

corresponding to the first and last atoms in the tuple. The graph does not, however, express the

hierarchical relationships of the model. There is no indication that the Value atom and the Zero

atom belong to the same set, likewise for the 0 and 1 atoms. Certain methods can help express these

relationships, such as node coloring and labelling, but they tend to introduce more clutter than

clarity when there are multiple levels of extensions.

In Software Abstractions, Jackson describes a snapshot view, in which the graph is drawn as

above, but with the addition of labelled contours surrounding sets. These contours can express

the hierarchical relationships embedded within a model, even with many levels of subsets, but as

Jackson notes, the Alloy Visualizer is incapable of producing them.

Not just useful for creating domain-specific visualizations, the Sterling Script View can likewise

be used to create these snapshot views. To do so, we leverage Sterling’s access to the npm package

manager, which at the time of writing contains over 1.3 million open source libraries; many are

well-established libraries that can be used to quickly create visualizations in the Script View. In

FIG we have imported Cytoscape.js [33], a graph theory library for visualization and analysis, and

it is included in the list of variables that are globally available in the scripting environment (left).

Cytoscape.js natively supports rendering compound graphs—graphs with embedded hierarchical

structure—using a variety of layout algorithms. The short script (center) in Figure 4.13 uses this

library to generate the snapshot (right).

Now we can see both the topological and hierarchical relationships of our instance. The Zero$0

atom is in the “this/Zero” set, which itself is in the “this/Value” set, as indicated by the labeled

contour lines surrounding each.
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Figure 4.13 An instance of the matrix model displayed as a snapshot using the Cytoscape.js library in the
Sterling Script View.

Figure 4.14 A dense matrix (left) in the CSR format (right).

4.2.5 Execution Traces

Now that we are able to distinguish zero from nonzero values, we could begin developing a model

of a sparse format. However, the intent here is not to delve into the details of sparse formats and

how they are modeled in Alloy; rather, we give the reader insight into what it is like to work with

a model that has been through dozens of iterations of modifications that add detail and model

complex operations. In doing so we demonstrate the challenges associated with interpreting the

instances and counterexamples generated by these models and how Sterling is used to address these

challenges. The model we present is the matrix transpose operation for the Compressed Sparse

Row (CSR) format. Before discussing instance visualization for this model we first present relevant

details of the CSR format and the model itself.

The CSR format is composed of three one-dimensional arrays. The A and JA arrays store nonzero

values and column indices, respectively. The IA array is an indexing array that contains the starting

location within the A and JA arrays of each matrix row. For example, the matrix in Figure 4.14, which

shows the dense matrix representation on the left and CSR on the right, contains only a single

nonzero value, 4, in the first row. This value is the first entry in the A array and its column index, 0, is

in the same position in the JA array. The first value in the IA array, then, is the starting index within A

and JA of the values of the first matrix row, as indicated by the arrow.

The matrix transpose operation flips the values of a matrix over its diagonal. To model the

operation in our dense matrix representation, we can use set comprehension to flip the row and

column indices. The CSR transpose algorithm, however, is more involved. It consists of four discrete
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steps, each modifying in place an array, IAO, that becomes the IA array for the transposed CSR

matrix. The details of each step, which can be found in Chapter 3 along with the complete model

online [1], are not important here. Rather, we focus on how the individual steps are composed in

Alloy to form a trace, an entire execution involving a series of operations.

To create the transpose execution trace, we model each of the four steps as a predicate, and

invoke each one individually within the transpose predicate, using the “output” of one step as the

“input” for the next.

pred step_1 [ c: CSR , iao: seq Int ] { ... }
pred step_2 [ iao , iao ': seq Int ] { ... }
pred step_3 [ iao , iao ': seq Int ] { ... }
pred step_4 [ iao , iao ': seq Int ] { ... }

pred transpose [ c, c': CSR ] {
...

some iao , iao ', iao '', iao ''': seq Int {
step_1 [ c, iao ]
step_2 [ iao , iao ' ]
step_3 [ iao ', iao '' ]
step_4 [ iao '', iao ''' ]
c'.IA = iao '''

}
}

The Alloy keyword seq declares a field as a sequence of atoms. In this partial model we use seq

Int, whose type is Int→Int, to represent arrays of integers. The first column of the relation contains

the index of the corresponding value in the second column. Modeling arrays this way is convenient,

as values can be accessed using the box join operator (e.g. iao[0] gives the first value in the iao array)

and the seq module provides many other useful helper functions. The existential quantifier some

binds four integer sequences, iao, iao’, iao”, and iao”’, representing the state of the IAO array after the

execution of each step. The step_1 predicate, modeling the first step of the algorithm, establishes the

initial state of the IAO array by relating the variables of the initial CSR matrix, c, to the variable iao.

The step_2 predicate models the second step of the algorithm by relating iao to iao’, and this pattern

continues for the remaining two steps. Finally, we establish that the IA array of the transposed matrix

is equivalent to the IAO array after the final step, iao”’.

Having also defined a valid CSR state in an invariant predicate, I, we can now generate an

instance of the CSR transpose operation.

pred showTranspose {
some c, c': CSR | I [ c ] and transpose [ c, c' ]

}

run showTranspose for 2 CSR , 2 Value , 7 seq
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Figure 4.15 An instance of the CSR transpose operation displayed in the Alloy Graph View.

Figure 4.16 An instance of the CSR transpose operation applied to a 1× 1 matrix, displayed in the Alloy
Graph View.

In the showTranspose predicate we have instructed the Alloy Analyzer to find a pair of CSR

matrices, c and c’, such that c is a valid CSR matrix and the two are related through the transpose

operation. Running the command produces the instance in Figure 4.15.

The directed graph representation of this instance is illegible, and there are no settings or built-in

tools that make it easier to interpret. By projecting over the CSR signature we can toggle between

the two matrices, but the individual graphs exhibit similar levels of complexity. Furthermore, there

is no way to display the individual steps of the transpose algorithm itself. The four intermediate

states of the IAO array are present in the instance as witnesses—values for quantified variables that

make the body of the quantified formula true. Reading a sequence in the graph requires locating

each index atom, searching for the edge label corresponding to that specific sequence, and locating

the value it connects to. Even in the case of a 1x1 matrix, shown in Figure 4.16, this process proves

cumbersome.

For this model, the Table View is better suited to exploring instance data. Tables more closely

resemble the structure of an array, and so we can see how the values of the IAO array evolve during

an execution of the transpose algorithm; the tables in Figure 4.17 show the four states of the IAO

array for the instance in Figure 4.15. Note that we must use the Sterling Table View, as the Alloy one

does not display witnesses.

Imagine, however, that the instance is instead a counterexample that expresses an error in the
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Figure 4.17 Tables showing the execution trace of the IAO array in the CSR transpose operation.

model. There are two CSR matrices, each consisting of three arrays, and four additional arrays that

represent the intermediate states of the IAO array. Considering the web of dependencies among

these arrays, it is likely that the effects of an error in the model will propagate through the entire

instance. Tracking down the source of the error, then, requires starting with the initial CSR matrix

and manually matching the execution trace with the expected behavior of the operation. Certain

subtle errors may even require that the pre- or post-state CSR matrix be converted to a dense matrix

format to provide important contextual information. Indeed, we found this to be the case when

writing these models.

Using the Sterling Script View, we can create a visualization that presents the relevant arrays in

a well organized and structured fashion and provides useful contextual information. Figure 4.18

shows the same instance displayed in Figure 4.15.

The image is divided into three rows: the top row shows the initial state of the matrix, the middle

row shows the complete execution trace for the transpose algorithm, and the bottom row shows

the state of the matrix after the transpose operation. The initial and final states of the matrix are

displayed in their CSR representations on the left and have been translated to their dense matrix

representations on the right. Nonzero values are highlighted in the dense matrices to highlight the

effects of the transpose operation.

Given that the script is over 150 lines long, the reader may question whether taking the time to

create this visualization is worthwhile, and so we emphasize that the script as shown was not written

in a single sitting. Rather it was created incrementally in a series of small additions in lockstep with

the model itself. Individual additions typically included short functions, many of which are shown

collapsed in the editor, that parse instance variables or render some small portion of the model.

The function that renders dense matrices, for example, is the same one we used in Section 4.2.2
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Figure 4.18 An instance of the CSR transpose operation displayed in the Sterling Script View.

with a small modification to highlight nonzero values. In building the script this way we gradually

assemble a sort of “library” of functions that can be called as needed as the model changes and the

visualization requirements evolve.

Complex models like this one can make an iterative approach to modeling less tractable. Com-

pounding factors of increased analysis time and instances that are difficult to interpret result in

increased time between iterations. The modeler, then, is forced to spend more time tracking down

modeling errors and waiting for analyses to complete than thinking critically about the model itself.

Sterling, as we have shown, addresses the issue of instance complexity by providing tools that make

instances easier to interpret at all stages of model development.

4.3 Background and Related Work

Having introduced visualization in Alloy and Sterling in Section 4.2, we now give additional back-

ground on the Alloy Visualizer and discuss related work addressing the shortcomings of the visual-

izations it provides.

Perhaps the most frequently used of the three views in the Alloy Visualizer, the Graph View

displays an instance as a directed graph in which each node represents an atom and each edge

represents a tuple in a relation. To help improve readability, basic properties of the graph, such as

labels, visibility, color, and node shape, can be customized manually or by using themes, and the

positions of the graph elements can be manually repositioned. Relations can optionally be displayed

as attribute labels, a feature particularly useful for binary relations that map to enumerations. Take,

for example, a model of a traffic light system: a relation that maps lights to their current color state

57



could be displayed as a label such as “color: green” on the light nodes [68]. The graph view also

supports projection, a feature most commonly used with models of dynamic systems. Since Alloy

has no built-in notion of time, models involving state change often explicitly model time using

higher-order relations. The graphical view of such a model, then, includes every state simultaneously.

When an instance of such a model is projected over time, however, Alloy constructs a graph for each

atom of the time signature, and the user is able to interactively step through snapshots of individual

states in a sequence, as demonstrated in Section 4.2.3.

The Graph View presents three commonly identified limitations [28], each related to the layout.

First, the layout algorithm, which automatically generates a Sugiyama-style graph [75], provides

no option for customization by the user and rigidly arranges graph nodes into rows. While it is

possible to interactively move nodes within a row by clicking and dragging, they cannot be moved

to different rows, making it particularly difficult for the user to manually improve the layout if the

calculated one is difficult to read [28, 63, 86]. Second, the graph layout is recalculated any time a new

instance is generated or the projection is changed, and so the user must reinterpret the entire graph

if, for example, they are stepping through state atoms in sequence [28, 65, 85]. Finally, difficulties in

understanding instances that stem from limitations of the layout algorithm are compounded by the

low-level nature of the directed graph representation, which can become cluttered with edges as

models become more complex [19, 34].

Various approaches have been proposed to address these issues, either by extending the Alloy

Visualizer or by introducing new tools. The Magic Layout tool, included in the Alloy Visualizer, is

used to automatically infer a better initial layout and theme based on the structure of the instance

itself. In doing so it addresses perceived difficulty of customization and prevents the user from

having to learn the intricacies of theme development by providing an automatic method for their

creation [68]. Improvements to the Magic Layout tool, such as static node positioning through

projected frames, coloring to express state change, and more, have been proposed [85].

Electrum [61] is an Alloy extension, adding connectives from linear temporal logic, that is used

to model and verify dynamic systems with rich configurations in bounded and unbounded scopes.

It tailors the standard Alloy visualizer to the needs of dynamic systems by adding visual components

to the UI; the trace graph indicates which state(s) are currently visible, and a split pane visualizer

presents two states simultaneously, as shown in Figure 4.19.

The Alloy4Fun tool, a web application built primarily for use in educational an context, enables

online editing and sharing of Alloy models and instances [62]. It includes a built-in visualizer that

generates directed graphs using the Cytoscape.js [33] library. Customizations such as node color

and shape are possible through a right-click menu, and the user can choose from multiple layout

algorithms. Nodes can be manually repositioned and are not restricted to rows, and the positions of

nodes are preserved between frames of projected instances. However, the visualization approach

is more lightweight compared to Alloy, allowing only the most common theme customizations.

Furthermore, the tool itself lacks a number of key features commonly used when writing complex

models, such as the Alloy module system which allows models to be organized in a modular fashion
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Figure 4.19 Two states of a trace in the Electrum Graph View.

among many files, and the ability to choose the particular SAT solver performing a given analysis.

In the Lightning tool [34], an Eclipse IDE plugin, users can create domain specific visualizations

using a Visual Language Model, which itself is written in Alloy. The VLM contains basic visual

elements such as shapes and text which can be composed or related to each other via connectors

and can be arranged through the definition of layouts.

In related work in other formalisms we look at several visualization tools based on ProB [57],

an animator, constraint solver, and model checker that supports many formal methods. BMotion-

Web [53] is a ProB-based tool for creating interactive visualizations of B, Event-B, and CSP models

based on web technologies. The learning curve for this tool is quite steep, however, and it is no

longer supported by the ProB team [79]. VisB [79], the successor to BMotionStudio [52], is a plugin

for ProB that enables users to visualize models in B, Event-B, Z, TLA+, and Alloy by composing

SVG graphics. A kernel for Jupyter [50] allows B and Pro-B models to be executed and visualized

from directly within Jupyter notebooks [35]. Outside of ProB we look to tools such as PVSio-web for

model-based development of human-machine interfaces [64] in PVS.

4.4 Sterling

Our experience using Alloy in the field of scientific computing has highlighted the need for Sterling.

The basic character of physical and other natural processes suggests that attention must be paid to

spatial relationships—not just topological ones—and to consistency in those relationships when

dynamic updates occur, as they do in problems with time-varying state. A lack of consistency in the

layout of graphs provided by Alloy, then, inhibits the incremental modeling process when developing

models in the scientific domain, and lack of tool support means we must resort to hand-drawn

figures when the provided visualizations prove too difficult to interpret.

We have identified a set of design goals, outlined in Section 4.4.1, which encompass a better

approach to visualization of state based models. Adhering to these design goals as the foundation

of the Sterling architecture, described in Section 4.4.2, has made possible the development of new
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and enhanced views, described in Section 4.4.3, that address shortcomings of the existing Alloy

visualizations and enable an iterative modeling approach.

4.4.1 Design Goals

The following design goals define a good approach to instance visualization based on both the

strengths and shortcomings of the existing visualizations, and from our experience modeling sci-

entific software using Alloy. Drawing from research in the field of human-computer interaction,

many of these design goals draw inspiration from the Thirteen Principles of Display Design [81], as

indicated by italics.

• Based on the principle of consistency, a tool supporting Alloy visualization by extending

existing functionality should provide a user interface similar to that of the Alloy Visualizer

when possible.

• A tool should minimize information access cost by providing immediate visual feedback and

minimizing the effort required to create legible visualizations.

• Based on the principle of pictoral realism, which states that a display should look like the

variable that it represents, a tool should provide functionality for creating domain specific

visualizations.

• A tool should natively support visualization of dynamic models by providing interactive control

over projections and, based on the principle of the moving part should support animation

and other methods to aid users in tracking changes between state.

• A tool should be extensible in terms of both visualization techniques and data providers. It

should enable the rapid prototyping and development of visualization techniques in formal

methods, and should not be strictly tied to a single formalism such as Alloy.

These design goals may be conflicting at times and may or may not be applicable in certain

contexts. As such, the architecture of Sterling and the design of its individual components attempt

to strike a functional balance among these goals to create an effective visualization tool.

4.4.2 Architecture and Design

Sterling is a React web application, packaged with a custom build of Alloy, that provides views

of instances in the same vein as the Alloy Visualizer. Drawing on the successes of tools such as

Alloy4Fun and BMotionWeb, a web-based platform was chosen due to the availability of robust

data visualization and user interface libraries as well as the popularity of the JavaScript program-

ming language. The custom build of Alloy, called Alloy Sterling, consists of two components: the

Alloy IDE and the Sterling web application. From the user’s perspective, writing models in Alloy

Sterling is no different than writing models in Alloy. The Alloy Visualizer is still available and the
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Figure 4.20 The Sterling communication architecture.

user has the option to choose either or both tools to display an instance or counterexample. For

brevity, when we refer to Alloy in this Section, we mean this custom build of Alloy called Alloy Sterling.

Communication. A client-server relationship is established between Sterling and Alloy, respectively,

by an embedded web server in Alloy, enabling two-way communication. Within Sterling, communi-

cation between Alloy and the individual Sterling views is managed using a mediator pattern. These

communication patterns are depicted in Figure 4.20.

The mediator, which communicates with Alloy using the JavaScript WebSockets API, is responsi-

ble for sending requests to and handling responses from Alloy. Messages sent using WebSockets are

text strings, and all communication between Sterling and Alloy adheres to the protocol outlined in

Table 4.2.

Using this communication pattern, Sterling can request from Alloy the most recently generated

instance or the result of evaluating an Alloy expression. Conversely, Sterling is always listening for

messages from Alloy and will display the most recently received instance. This way the user can, for

example, request the next solution from the Alloy IDE or the web browser, and Sterling will always

display the correct instance.

Addressing our design goals, direct communication between Alloy and Sterling minimizes in-

formation access cost by enabling instant visual feedback when an instance or counterexample is

generated. Furthermore, the mediator pattern provides flexibility in terms of data providers and

visualizations. Regarding data providers, Alloy need not be the source of data so long as the data

being supplied to Sterling adheres to the XML format of an Alloy instance and communication is in

adherence with the protocol outlined above. As such, any model finder can be used to supply data

for visualization. Indeed, an Alloy-like model finder called Forge, developed at Brown University for

a Logic for Systems class, makes use of Sterling for visualizations. Regarding visualizations, Sterling

views can be developed in isolation from concerns of communication or evolving data formats. Raw
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Message protocol: Sterling→ Alloy

Message Description

current Request the current instance

next Request the next solution

EVL:{id}:{expression} Request evaluation of an Alloy expression
• {id} - a unique string identifier
• {expression} - the expression to be eval-

uated

Message protocol: Alloy→ Sterling

Message Description

EVL:{id}:{result} The result of evaluating an expression
• {id} - the unique string identifier submit-

ted with the request
• {result} - the result of evaluating the sub-

mitted expression

XML:{instance} An Alloy instance in XML format
• {instance} - the XML data

Table 4.2 The Sterling communication protocol.
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Figure 4.21 The Sterling application store.

instance data received by the mediator is translated to a common format that is distributed to each

of the individual views for display.

User Interface. The Sterling user interface is implemented using React, a JavaScript library for build-

ing component-based declarative views. The React model encourages composition over inheritance,

where individual visual components are assembled into a single, cohesive interface. As such, there

is a rich ecosystem of component libraries. Sterling employs the Blueprint JS library for core UI

components such as navigation bars, buttons, toggles, icons, and more.

In line with our design goals, the layout of the Sterling user interface intentionally mirrors that of

the Alloy visualizer. As in Alloy, there is at most a single instance visible at any given time. The user

can toggle between views using buttons in the navigation bar and request more solutions from the

Alloy Analyzer using a “Next” button. Each Sterling view is independent of the others, containing

its own settings, which are presented in a collapsible sidebar. As in Alloy, an evaluator in Sterling is

used to evaluate individual expressions for the current instance in a REPL.

State Management. The application state of a visualization tool like Sterling, which provides nu-

merous views and settings in an interactive user interface, is inherently complex. The nature of the

tool gives rise to complex state dependencies that can be difficult to maintain as the tool grows. To

manage application state, Sterling employs Redux, a JavaScript library which provides a predictable

container, operating in a similar fashion to a reduce function. With Redux, the complete state of

the Sterling application is stored in a single object tree called the store; this includes the current

instance, the connection status with Alloy, and the complete state of all settings for each view. To

change the application state, we specify mutations using actions that describe what we want to

happen rather than directly performing mutations. Then, pure functions called reducers specify

how each action transforms the entire state of the application.

The state tree is partitioned such that each view occupies a separate branch, as shown in Fig-
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ure 4.21. When an instance is received by Sterling, the mediator parses the XML data and places

the instance data into the application store using an action called setInstance. Each view, then,

has registered a reducer function that specifies how that view’s branch of the application store is

transformed as a result of the setInstance action.

Redux was chosen because it enables the mediator pattern employed by Sterling and provides

a scalable approach to application state, making Sterling a viable platform for rapid prototyping

and development of new visualization techniques. As Redux provides a single source of truth for

application state, adding interactive views and UI components is straightforward.

4.4.3 Views

Sterling provides three views: Graph, Table, and Script. The Graph and Table Views extend the func-

tionality of their counterparts in the Alloy Visualizer, and the Script View is an original contribution

that enables the creation of domain specific visualizations as part of the iterative design process.

Here we discuss the implementation details for each of the three views.

Graph View. The Sterling Graph View provides all of the same functionality of the Alloy Graph View,

but is supported by a few key extensions. Guided by our design goals, these extensions address

numerous issues commonly discussed in the literature and those encountered in our experience

modeling scientific software. Here we describe these extensions in detail.

First, graph elements are not restricted to rows; users may freely arrange graphical elements to

make the display more readable. Second, the layout algorithm is not automatically executed when

the projection is updated or when a new instance is generated, unless the graphs do not have any

elements in common. As such, graphical elements remain static as users step through stateful models

and generate instances. Furthermore, Sterling provides multiple configurable layout algorithms,

including circle, grid, row, and Sugiyama style, that the user may choose to apply manually at any

time. Finally, in an effort to address crowding issues created by fields with many tuples, the Graph

View supports multiple methods for edge collapsing as well as semantic zooming. Edge collapsing

allows a user to display multiple edges between the same two elements as a single edge with multiple

labels. Semantic zooming, controlled by the scroll wheel, modifies the distance between graphical

elements in much the same way that a map is zoomed, keeping their sizes and relative distances

constant. Contrast this with geometric zooming, used in Alloy, which modifies the dimensions of

graphical elements to achieve a zooming effect.

This combination of features results in a more interactive system when compared to the Alloy

Graph View. In Sterling, the initial layout of the graph acts more as a “good” starting point rather

than attempting to serve as the best possible arrangement, and repositioning atoms manually

or by applying layouts is encouraged. Panning and zooming using the mouse encourages direct

interaction with the graph and the combination of the two is particularly useful for exploring very

large graphs. Contrast this with the Alloy Graph View, which has a more static feel despite including

certain interactive features. The inability to move nodes outside of the rows in which they are initially
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Figure 4.22 A dense matrix instance in the Sterling Table View.

placed discourages use in all but the most simple cases, and so the initial layout tends to be close to

the best possible arrangement of atoms. Furthermore, zooming serves only to make the graph image

larger in size, and panning is only supported when the image overflows the window. In practice we

have found that, particularly as instances grow in size, the interactive nature of the Sterling Graph

View facilitates a quicker understanding of the instances themselves, and therefore better supports

the iterative design process.

Table View. Though rarely discussed in the literature, the Table View provides a unique and useful

perspective of instance data. As we demonstrated in Section 4.2.5 by modeling execution traces of

the matrix transpose operation, certain problems are better suited for display in a structured grid

than in a directed graph.

In the Table View, all signatures and fields are displayed as tables. The Alloy Table View is basic,

providing no functionality beyond display of simple tables. The Sterling Table View, on the other

hand, provides features and tools to aid the user in exploring instance data more effectively. These

include color categorization of tables by type, filtering, sorting, and alignment tools, and the ability

to display skolemized variables (witnesses) as highlighted rows. This last feature has proven most

useful, as it provides useful context for witnesses that are subsets of other relations. For example, Fig-

ure 4.22 shows an instance of our dense matrix model in the Table View. For this particular instance,

we have also instructed Alloy to determine the subset of the values in the matrix that are nonzero

using the existential quantifier. This subset is bound to a witness variable, $showMatrix_nonzero,

which is highlighted in blue in the vals relation, rather than displayed as a separate table.

Script View. The Script View, a view introduced by Sterling, provides a scripting environment for the

development of domain specific visualizations and the rapid prototyping of visualization techniques
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that may see deeper integration into Sterling by improving existing views or creating new ones

altogether. This environment is enabled by the combination of three components: a scripting

language, a rendering stage, and the instance data. Here we introduce each component individually

and then discuss how the view has found applications in scientific computing.

Scripts in the Script View are written in JavaScript using a built-in text editor that supports

syntax highlighting and code completion. JavaScript was chosen as the preferred language due to

its popularity, the large ecosystem of graphics rendering libraries, and the native, cross-platform

execution environment provided by web browsers. Within the Script View, users have direct access

to npm, a JavaScript package repository containing over 1.2 million JavaScript packages at the time

of writing. Users specify the libraries they require from the settings sidebar and Sterling retrieves

them from npm using the jsDelivr service.

The rendering stage, adjacent to the text editor, serves as a blank canvas onto which custom

visualizations are rendered. Using a toggle button in the user interface, the user can choose from

three different types of rendering stage: HTML div, SVG, and HTML Canvas. The choice of rendering

platform is typically dependent on the type of visualization the user wishes to create, as each has its

own strengths and weaknesses. The HTML div element is a generic container for HTML elements and

can be used, for example, to create custom tables to display instance relations or add user interface

components such as buttons and menus. SVG, or Scalable Vector Graphics, is a declarative, XML-

based image format that supports 2D vector graphics. It provides convenient methods for drawing

generic shapes such as rectangles, circles, and text, but also supports the creation of arbitrary shapes

using paths. HTML Canvas, compared to SVG, provides a lower-level, imperative rendering API

capable of rendering 2D and 3D graphics. The 2D rendering API supports only two basic shapes,

rectangles and paths, and so visualizations are typically created by combining multiple paths using

commands similar to those found in turtle graphics. The 3D rendering API exposes a WebGL context

that the user can use to create interactive 3D visualizations. A 3D graphics library such as THREE.js

is typically used to create visual elements, as the WebGL API is relatively low-level and does not

provide methods for the creation of generic shapes or manipulation of 3D views.

A JavaScript library called alloy-ts, created specifically to support the Script View, provides the

instance data, including all signatures, atoms, fields, and skolems, as individual variables that are

named according to their counterparts in the Alloy instance. For example, an atom named Matrix$0

in an instance will be exposed in the scripting environment as a variable named Matrix$0 and

a field named vals will be exposed as a variable named vals. Projections are fully supported in

the Script View through the same UI components used to navigate projections in the Graph View,

and the variables created by the alloy-ts library are automatically updated to reflect the current

projection. Furthermore, the alloy-ts library provides a JavaScript API that is useful for exploring and

manipulating instance data. As in Alloy, all variables created by the alloy-ts library are considered

sets, deriving from a common class called AlloySet. This class, using JavaScript Proxies, redefines

the behavior of the lookup/assignment operators, dot (.) and bracket ([]), to perform a join operation

instead. For example, the expression Matrix$0.vals will perform a dot join, as it would in Alloy,

66



rather than attempt to look up the vals property of the Matrix$0 object, as it would in vanilla

JavaScript. This feature gives the scripting view a more Alloy-like feel and leads to less verbose

scripts, particularly when chaining join operations, as the operators can be used in lieu of method

calls.

Scripts written in the text editor are executed in a sandbox environment that contains, as global

variables, a reference to the rendering stage, any libraries the user has requested, and the instance

data from the alloy-ts library. After a script is edited, it must be manually executed by clicking the

“Execute” button or by pressing Ctrl+Enter. If it runs without error, the script will be automatically

rerun each time a new instance is generated or the projection is changed. As such, the Script View

enables an iterative modeling process and supports visualization of stateful models.

As demonstrated in Section 4.2, the Sterling Script View promotes the iterative design process

by giving the modeler tools to create domain specific visualizations. In doing so, the modeler is able

to more easily extract relevant information from instances and counterexamples in order to identify

modeling issues.

Outside of modeling sparse matrices, we have also leveraged the Script View for models of

physical simulations. In a study investigating an extension made to an ocean circulation model,

ADCIRC, the authors explore implementation choices and ensure soundness of the extension using

Alloy [11]. In the models, finite element mesh topologies are represented using vertices and triangles

as basic building blocks. While positional attributes such as nodal coordinates in three-dimensional

space cannot be modeled, the allowable mesh topologies are constrained to include only those

that have a planar embedding, ensuring that the mesh is physically meaningful. As such, a planar

embedding of an instance is one possible realization of that mesh topology if physical coordinates

were to be assigned to the mesh nodes. Inferring the planar embedding given only the topologies of

the model relations, then, is perhaps the most difficult step in interpreting a mesh instance. Indeed,

the authors state that “more than any extension to Alloy, what would have benefited our study most

is a tool capable of automatically producing planar embeddings of meshes from Alloy instances,

which proved to be tedious to do by hand.”

Using the Script View, we extract topologies from mesh instances and automatically calculate

and render a planar embedding. Because these views so closely match the actual physical layout of

a mesh, the spatial relationships of an instance are intuitively obvious. These scripts have proven

useful enough to warrant the development of a Mesh View in Sterling, shown in Figure 4.23. As

dynamics are added to the model and the mesh representations are embellished with attributes such

as water surface elevations and wet-dry status, deeper integration with Sterling makes exploring of

instances more straightforward. Rather than manually edit variables in scripts, we use a purpose-

built user interface to control visual properties of the mesh and control animations. In doing so we

can, for example, visualize inundation produced by advancing storm surge fronts.
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Figure 4.23 The Sterling Mesh View.
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CHAPTER

5

CONCLUSIONS

The field of scientific computing faces many challenges related to reliability, reproducibility of

results, and productivity. Not merely anecdotes, numerous empirical studies reveal cases of software

“thwarting attempts at repetition or reproduction of scientific results” [74], and they make it clear

that existing practices have led to a productivity crisis resulting in “frustratingly long and troubled

software development times” [32]. While numerous approaches have been proposed to address

the unique challenges facing the field of scientific computing, we believe that separating concerns,

along the lines suggested here, should allow state-based methods to find productive use in a domain

that could benefit from the kind of modeling and push-button analysis they provide.

In the presented research we demonstrate how and why state-based formal methods fit into the

broader context of scientific computation, using Alloy to perform case studies. In these studies we

identify challenges that stem from the adaptation of formal methods to our domain, and address

them with new methods and tools that make the approach more accessible. General purpose tools

like Alloy provide no out-of-the-box methods for modeling the types of bounded iteration commonly

used in scientific computing, for instance, so we introduce a new idiom that makes reasoning about

these types of computations possible. In addition, the visualizations generated by Alloy are not well

suited to our domain, as they are not capable of capturing the types of spatial relationships that

are characteristic of scientific software. These properties are critical to an intuitive understanding

of the models we develop, so we introduce a web-based interface called Sterling that focuses on

spatial relationships and facilitates the development of domain specific visualizations.

In terms of practicality, the methods and tools developed in this research are lightweight and

automatic, making them convenient for spot checking and reasoning about portions of large-scale

numerical code bases. By viewing comments in source code as a specification, for instance, we are
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often able to verify an implementation in Fortran by building and checking a small Alloy model. A

recent example of doing so in ADCIRC [60], a finite element code for simulating hurricane storm

surge, was motivated by a desire to use different linear algebra solvers with different sparse matrix

format requirements. Because of complex interactions between these formats and ADCIRC’s custom

assembly and boundary condition routines, lightweight models can be used to increase confidence

in a new implementation. We have also applied these ideas to existing code used in production, and

in one case found a discrepancy between an implementation that imposes boundary conditions

and its purported behavior, based on comments that appear in the source code. Although further

inspection revealed the flaw to be in the documentation itself and not the code, the ease with which

this kind of spot checking can be performed provides some additional evidence of its usefulness.

Given the unique challenges and broad range of applications in scientific computing, though, we

recognize that no single approach or tool is likely to bridge the communication gap that separates it

from computer science. Rather, a wide variety of methods and development practices will need to

contribute to the gradual improvement of the quality, reliability, and maintainability of scientific

software. Some tools may prove more difficult than others to adapt to the domain, but the initial

effort in these cases is an important step towards making the approaches more accessible, and

therefore able to be used in practice by scientists and engineers.

Regarding future work, development of Sterling is ongoing, and will continue at Brown University

through a postdoctoral research opportunity in the Department of Computer Science. This activity

will include work on both the visualization interface for Alloy, as well as a new, primary visualization

interface for a state-based teaching tool called Forge, developed at Brown. These research directions

were initiated in spring 2020 in the context of a Logic for Systems course, taught at Brown, and future

directions will focus on leveraging user studies to better understand the role of visualization and

user interaction in state-based modeling. Additional directions include continued development

of the custom Mesh View to support models of finite element software, development of “syntactic

sugar” to make certain elements of the approach more convenient, e.g., use of the tabular idiom, and

the application of techniques from the operations research community like Modeling to Generate

Alternatives [20] to enhance user-guided exploration of a model’s solution space.
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