
ABSTRACT

DYER, TRISTAN. An Interface for Subdomain Modeling using a Novel Range Search Algorithm
for Extracting Arbitrary Shapes. (Under the direction of John Baugh.)

ADCIRC is a finite element program that is widely used by modelers to simulate storm

surge in order to predict the effects of hurricanes on coastal areas. Subdomain modeling in

ADCIRC is a technique used to reduce the total runtime and storage requirement of a series

of hurricane storm surge simulations performed for a particular storm on multiple, alternative

topographies in a geographic region of interest. This thesis presents a graphical user interface for

the subdomain modeling approach, called the ADCIRC Subdomain Modeling Tool (SMT), that

is meant to streamline pre- and post-processing requirements by allowing modelers to extract

subdomains from ADCIRC meshes interactively and to organize subdomain runs on the file

system. Several shape selection tools are included in SMT that allow modelers to select areas of

interest of an ADCIRC mesh by drawing the shape on top of a plan view of the mesh. Because

ADCIRC meshes can often be extremely large, a novel search algorithm, called the generalized

range search algorithm, is used to provide a sufficient level of responsiveness from the tool when

a modeler is creating subdomains. The algorithm, which operates on a quadtree data structure

that contains an ADCIRC mesh, works by avoiding the need to search through regions that are

guaranteed to fall either inside or outside of the shape. It is possible to apply this algorithm to

essentially any 2-dimensional geometric shape, with the only requirements being that there exists

a test that determines if a point falls inside of the shape and there exists a test that determines

if a line segment intersects with the shape. This flexibility makes the algorithm highly versatile

and easily extensible. The upper and lower bounds on performance of the algorithm are derived,

and test cases show that the actual performance mirrors the expected performance. Two case

studies demonstrating the proper use of the core features of SMT are presented.
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Chapter 1

Introduction

This thesis is divided into five chapters. Following this introductory chapter, the second describes

the design and development of a GUI tool, called the ADCIRC Subdomain Modeling Tool

(or SMT), that aims to provide a front-end for the pre- and post-processing requirements of

subdomain modeling. The third chapter describes the development of a novel range search

algorithm that allows modelers to have seamless interaction with an ADCIRC mesh in SMT.

The fourth chapter presents two case studies that illustrate the usage of SMT, and finally, the

fifth chapter includes concluding remarks and anticipated future work.

1.1 ADCIRC

ADCIRC is a program that uses finite element methods over unstructured grids to solve time

dependent, free surface circulation and transport problems [1]. It is widely used by scientists

and engineers to analyze the effects of hurricane storm surge on coastal regions [2]. ADCIRC

can solve both two-dimensional depth integrated (2DDI) and three dimensional problems and

can be run in serial or in parallel.

An ADCIRC run is performed over an unstructured mesh. An unstructured mesh is composed

of nodes and triangular elements. A node represents a point in three-dimensional space and

an element describes the connectivity of three nodes. Figure 1.1 shows a small portion of an
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unstructured mesh that contains 7 nodes and 6 elements.

NodesElements

Figure 1.1: A Portion of an Unstructured Mesh

For storm surge modeling, meshes that represent the topography of a geographic region are

used, and typically need to be on the order of millions of nodes and elements in order to provide

sufficient land coverage as well as adequate refinement for areas of interest. Depending on the

size of the mesh being used, the amount of time being simulated, the number of processors being

used, and a host of other factors, an ADCIRC run can take anywhere from seconds to weeks to

complete. Additionally, large problems are capable of producing an enormous amount of output

with files on the order of tens of gigabytes in size.

1.2 Subdomain Modeling in ADCIRC

The subdomain modeling approach was developed with the goal of reducing the total runtime

of a series of hurricane storm surge simulations performed for a particular storm on multiple,

alternative topographies in a geograpic region of interest [2, 3]. This is done by recording data

at the boundaries of the region of interest during the simulation of the storm event over the

entire geographic region (called a full domain). The recorded data are then used to enforce the

boundary values during a subdomain run, producing a solution that is nearly identical to the

full domain run in a fraction of the time. With this method, a modeler is able to see the effects

2



of localized changes in a region of interest without having to perform multiple full domain runs,

which can be very costly.

1.3 Introduction to SMT

Development of the subdomain modeling approach centered around ensuring the correctness

of the solution provided by a subdomain run. The functionality needed for pre- and post-

processing of data for subdomain modeling is currently provided as a command-line interface

and is implemented in C++ . The goal of this thesis is to provide an interactive graphical user

interface explicitly for the purpose of streamlining the pre- and post-processing requirements of

the subdomain techinique as well as organizing and managing data. The design and development

of this tool, called the ADCIRC Subdomain Modeling Tool (or SMT), is described in Chapter 2.

Two example use cases of SMT are provided in Chapter 4.

3



Chapter 2

Design and Development of SMT

The development of the ADCIRC Subdomain Modeling Tool has been inspired by the need to

streamline the pre- and post-processing needs of the subdomain modeling approach in order to

provide an interactive environment for modelers to use and to promote the use of the subdomain

approach. The following sections describe the development process from initial design decisions

and goals to specific implementation details.

2.1 Design Goals

The design choices made in creating the ADCIRC Subdomain Modeling Tool were guided by

the following three ideals:

Speed

An average PC should be able to run SMT without any significant speed limitations. A very large

ADCIRC mesh (for example, the western north-Atlantic mesh, which contains approximately

1.2 million elements) should be able to load in a reasonable amount of time, and computations

that provide the backend for all interactivity features should perform well enough that they go

unnoticed by the user. As benchmarks, unit tasks such as loading a file should take no more

than 10 seconds [4] and graphical processes such as zooming, panning, and selection should take
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no longer than 100 ms, which is considered to be the perceptual processing time constant [4, 5],

or the largest amount of time between an action and a reaction that can go unnoticed.

Interactivity

The user interface should provide both an interactive experience with ADCIRC meshes, as well

as a logical and intuitive layout that allows even the most inexperienced modelers to create and

run a subdomain with minimal instruction.

Extensibility

The coding should be intuitive, portable, and well documented so that developers can quickly

and easily add features to the core program as they are needed by modelers.

2.2 Identification of Required Functionality

The design of the SMT begins with the identification of the functionality it will provide. This

functionality is determined by stepping through the workflow of subdomain modeling.

Targeting Regions of Interest

The first task a modeler must complete when using the subdomain approach is locating and

selecting the region of interest in the full domain. In order to complete this task, SMT must

provide a visual representation of the full domain mesh with which the user can interact. AD-

CIRC meshes can have wide range of refinement, so the ability to zoom and pan is required

to be able to visualize every part of the mesh with appropriate accuracy. Location of areas of

interest may be based on the topography of a region for some modelers, while for others it may

be based on geographical coordinates, so SMT must provide a way to visualize these as well. A

number of selection tools that allow the modeler to select elements in the subdomain also need

to be provided.
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Handling Multiple Subdomains

The subdomain modeling technique allows a modeler to create multiple subdomains under a

single full domain. The boundary conditions for each of these subdomains is recorded during

a single full domain run. SMT needs to provide a way to manage multiple subdomains as well

keep different sets of full/subdomains separate and organized.

File Management and Backend Operations

Once an area of interest has been targeted, the modeler needs to create a number of files

and place them in specific directories in order for the subdomain modeling approach to work

correctly. SMT should automate this process with minimal input from the user. Additionally,

after a full domain run, the boundary condition data for each subdomain must be extracted.

Depending on the length of the run and the number of boundary nodes, this process can be very

time consuming. SMT must provide a strong backend that performs these operations as quickly

as possible.

Mesh Modification

Being able to run multiple small domains with localized changes is one of the features that

draws users to subdomain modeling, so SMT must provide a way of making localized changes

to a subdomain as well as quantifying or visualizing the changes in the solution that result from

localized changes to the mesh.

2.3 Characterization of Core Features

With the required functionality defined, a characterization of the core features of SMT is listed.
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2.3.1 GUI

SMT provides a graphical user interface in which all subdomain modeling operations are per-

formed. The GUI is partitioned in a way such that the mesh visualization takes up the largest

portion of the display and the modules window fills the remainder of the available space.

Mesh Visualization

The largest portion of the GUI is dedicated to visualizing the mesh because it is expected that

most of the modeling time will be spent interacting with the mesh or visualizing data on the

mesh.

Modules

The modules portion of the GUI provides an interface for all non-visual operations and is laid

out in such a way that the work flow of subdomain modeling is mirrored. It contains modules

for managing projects, creating subdomains, editing features in subdomains, running ADCIRC,

and analyzing results.

2.3.2 Projects

SMT organizes subdomains into groups based on the full domain from which they were created.

A full domain and all of its subdomains are considered an ADCIRC Subdomain Project. A

project can be saved using the specified ADCIRC Subdomain Project File format (.spf). When

a project is opened in SMT, the structure of the project is displayed in the Project Explorer

module. This structure is similar to that of a file-tree.

2.3.3 Backend

SMT uses C++ file I/O to provide a high performance backend for boundary data extraction,

which is a time consuming process that almost exclusively involves reading and writing large
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files. The visualization backend is implemented using OpenGL [6] and the computationally in-

tensive interactivity features (i.e., node and element selection) use a novel range search algorithm

developed specifically for this application, that is described in Chapter 3.

2.4 Development of SMT

SMT is written entirely in C++ because of its speed [7] and because it supports object-oriented

programming and has a wealth of options for free, cross-platform GUI toolkits [8, 9, 10]. Ad-

ditionally, because of the requirement for a fast, I/O based backend, a C based language is an

obvious choice. Java and Python were considered as alternatives but initial tests of the visual-

ization libraries [11, 12, 13] did not perform well when interacting with or animating very lage

meshes.

Qt [8] is used as the GUI framework because it is free1, cross-platform, extensively docu-

mented and well supported, and provides a native OpenGL context. Additionally, Qt’s event

handling and signal/slot mechanism are well documented and very easy to understand and

implement, providing for furter extensibility and ease of development.

OpenGL is used for all graphics rendering because it is open-source, cross-platform, high

performance, and enjoys very widespread use. Direct3D was also considered, but because it is

exclusive to Microsoft operating systems, OpenGL was chosen as the more portable option.

2.4.1 GUI Development

The layout of the SMT user interface is a result of numerous iterations in which many different

layouts were tested. Early iterations focused more on visualization rather than a strong coupling

of visualization and subdomain modeling. Typically, more options for modifying how the mesh

appeared were visible to the user while tools for subdomain modeling were hidden in menus. As

the importance of these tools became apparent, these roles were reversed. Now, the subdomain
1Qt is available under the GNU GPL (version 3). See http://qt-project.org/doc/qt-5.1/qtdoc/gpl.html
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modeling tools are more organized and more visible to the user, which is more in line with the

goal of providing a streamlined user interface specifically for use in subdomain modeling.

2.4.2 Developing ADCIRC Mesh Interactivity

Providing interactivity with an ADCIRC mesh is one of the most vital features for subdomain

modeling. OpenGL provides sufficient performance to display very large meshes as well as nav-

igate within them by zooming and panning. However, the ability to select a subset of elements

from the mesh in an interactive way is a more difficult problem that must be solved by SMT.

Additionally, the goal was to provide a number of different ways for modelers to select elements

so that they would not be limited by the shape of their subdomains. Early versions of SMT used

the exhaustive search method, in which each node or element is tested individually in order

to determine if it falls inside of the desired shape, but it became clear very quickly that this

method could not provide sufficient performance in order to maintain an appropriate level of

interactivity with very large meshes.

Research showed that the only algorithms specifically made to find a subset of spatial data

from a larger set, called ‘range search’ algorithms [14], are only capable of finding data in a

set range, which in the case of 2-dimensional data, means a rectangle. As a result, we have

developed an algorithm, called the generalized range search algorithm, that is capable of finding

a subset of data that falls within a range defined by any arbitrary 2-dimensional shape. The

design and development of this algorithm is described in depth in Part 3.

Using the generalized range search algorithm as the backend, the element selection tools,

which currently include a point search, circle search, rectangle search, and polygon search,

provide the level of responsiveness required to create an interactive user interface.
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Chapter 3

Search Algorithm

3.1 Introduction to the Algorithm

The generalized range search algorithm developed for the ADCIRC Subdomain Modeling Tool

is essential to providing responsive interactivity with the ADCIRC mesh. Node and element

selections in SMT are made by using one of the shape selection tools to draw a shape on a plan

view of the ADCIRC mesh. For example, the images in Figure 3.1 show a circle being drawn

over a mesh and the elements that are selected after the circle is ‘dropped’.

(a) Drawing the Circle (b) The Selected Elements

Figure 3.1: Drawing and Selecting From a Circle
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The goal of this algorithm is to provide a very fast method for selecting nodes or elements

that fall within any arbitrary shape. The algorithm combines many existing methods in order

to produce the desired result.

3.2 Data Structure

The key to this algorithm’s success is the underlying data structure, a quadtree. More specifically,

the physical properties of the quadtree as they relate to the mesh that it contains are what make

the algorithm possible.

3.2.1 Quadtree Basics

A quadtree is a hierarchical data structure in which each branch contains exactly four chil-

dren [15, 16]. Each of these children can be either a leaf or another branch. The top branch is

called the root branch. Figure 3.2 shows an example of a simple quadtree with two branches.

Branch

Leaf Branch Leaf Leaf

Leaf Leaf Leaf Leaf

Figure 3.2: A Simple Quadtree with Two Branches
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This simple data structure can be used to decompose a two-dimensional finite element mesh

into smaller, more manageable groups based on the physical location of nodes or elements.

Many types of quadtrees exist, each with their own benefits and drawbacks. This algorithm uses

a simple bucket PR quadtree, where PR stands for point-region [14]. PR quadtrees have been

used successfully in many GIS applications [17, 18] and they contain the properties required for

this algorithm to work properly.

PR quadtrees are partitioned into equal-sized regions rather than based on data point loca-

tion, as in point quadtrees. This partitioning is done recursively until each leaf contains only a

single data point. Because tree structures often use pointers, excessive page faults can lead to

slow memory accesses and decreased performance [14]. However, because region partitioning is

used, we are able to use bucket methods. Bucket methods aim to reduce page faults and ensure

efficient memory accesses [14]. They do this by allowing leaf nodes to contain more than one

data point. In essence, the bucket method groups data points that are physically close to each

other, which is the property that will be leveraged in this algorithm.

3.2.2 Storing a Finite Element Mesh in a Quadtree

Before a search can be performed over the finite element mesh, the nodal and elemental data

need to be stored in the quadtree. The following data are needed to populate the quadtree:

• A list of x- and y- coordinates for all nodes

• A list of elements

• The minimum and maximum x- and y- nodal coordinates

• The maximum allowable number of nodes in a leaf (i.e., the bucket size)

Starting with this set of data, an empty quadtree is created. This empty quadtree consists

of a root branch that has four empty leaves. The root branch is represented physically as a

rectangle with bounds (xmin, xmax) , (ymin, ymax). Splitting the root branch down the middle

12



along both the x- and y-coordinates gives the bounds of the four leaves. Figure 3.3 shows the

root branch of an empty quadtree and Figure 3.4 shows the four leaves of an empty quadtree.

xmin xmax

ymin

ymax

Figure 3.3: The Empty Quadtree with the Root Branch Highlighted

xmin xmax

ymin

ymax

Figure 3.4: The Empty Quadtree with the Leaves Highlighted

Adding Nodes to the Quadtree

Once the empty quadtree has been created, the nodes are added to the quadtree using the

recursive algorithm defined in Algorithm 3.1 that is based on the insertion algorithm for PR
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quadtrees [14] but modified to accomodate the bucket method.

Algorithm 3.1: Add a Node to a Branch
/* Branch: The branch to add the node to */
/* Node: The node to add to Branch */
/* BinSize: The maximum number of nodes in a leaf */

1 Algorithm AddNode(Branch, Node, BinSize)
2 for subLeaf in Branch do
3 if Node is inside subLeaf then
4 Add Node to subLeaf ;
5 if subLeaf.nodeCount > BinSize then
6 subLeaf → subBranch;
7 for subNode in subLeaf do
8 AddNode(subBranch, subNode, binSize);
9 return;

10 for subBranch in Branch do
11 if Node is inside subBranch then
12 AddNode(subBranch, Node, binSize);
13 return;

This AddNode function is called for each node with the root branch and bucket size as the

two additional parameters. The first for loop determines if the node falls into any of the four

leaves that the target branch contains. If it does, the node is added to the leaf and a test is

performed to determine if the number of nodes in that leaf now exceeds the bucket size. If it

does, the leaf is converted to a branch and all of the nodes from that leaf are added to this new

branch using the AddNode function. Otherwise, the function returns.

If, however, the node did not fall into any leaves of the target branch, the second for loop

determines if the node falls into any of the branches that the target branch contains. If it does,

the function recurses, using the appropriate sub-branch as a parameter.

Figure 3.6 shows how the nodes of the small finite element mesh in Figure 3.5 are stored

within a quadtree of size two.
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Figure 3.5: Visualization of the Quarter-Annular Case

Figure 3.6: Visualization of Quadtree Containing the Quarter-Annular Case
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Adding Elements to the Quadtree

Once the nodes have been added to the quadtree, adding the elements is very simple. At this

point, the structure of the quadtree is finalized, so adding elements is merely a matter of finding

the correct leaf (or leaves) to add each element to. The recursive procedure presented in Algo-

rithm 3.2 is used.

Algorithm 3.2: Add an Element to a Branch
/* Branch: The branch to add the element to */
/* Element: The element to add to Branch */

1 Algorithm AddElement(Branch, Element)
2 for subLeaf in Branch do
3 if Element is inside subLeaf then
4 Add Element to subLeaf ;
5 for subBranch in Branch do
6 if Element is inside subBranch then
7 AddElement(subBranch, Element);

This is the same procedure used to add nodes to the quadtree with the exception that there

is no check against a bucket size. In order for the search algorithm to find all elements when

performing a search, an element must be considered to be inside of a leaf or branch if any of its

three nodes fall within the leaf or branch. This approach has the added side-effect of allowing an

element to be placed into multiple leaves. Therefore, the structure of the quadtree is determined

by the node partitioning in order to simplify the creation of the quadtree.

3.3 Search Algorithm

The goal of the search algorithm is to overlay a 2-D finite element mesh with any arbitrary

shape and extract the set of nodes or elements that fall inside of the shape. Numerous search

algorithms, called range search algorithms, exist to search quadtrees for data points that fall

within a specified region [14, 15], but to our knowledge none exist in publication that specifically

seek to leverage the properties of the bucket methods and apply them to a generalized shape.
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The search algorithm uses recursive methods, as is common in hierarchical data struc-

tures [14]. It also bears some resemblance to R-Tree search algorithms [19] in that a ‘pruning’

of sorts is performed on the children of a branch that is known to not intersect with the range

of interest in any way.

3.3.1 Theory

There are three basic concepts that allow the algorithm to perform quickly and correctly:

• If a branch or leaf of the quadtree falls completely within an arbitrary shape, all of the

nodes and elements contained by that branch or leaf are also guaranteed to fall within the

shape.

• If an edge of a branch or leaf of the quadtree intersects with an edge of the arbitrary shape,

the nodes and elements contained by that branch or leaf might fall within the shape.

• If a branch or leaf of the quadtree does not fall completely within or intersect with an arbi-

trary shape, all of the nodes and elements contained by that branch or leaf are guaranteed

to not fall within the shape.

Using these properties, it is possible to traverse the quadtree in a depth-first search manner

and very quickly drastically reduce the size of the exhaustive search that is used to find the set

of nodes or elements that fall inside of an arbitrary shape.

3.3.2 Shape

In order to provide a method that is very generalized and can be applied to as many arbi-

trary shapes as possible, the search algorithm requires that the shape meet only three simple

standards:

• Knowledge of the location of any single arbitrary point on the shape’s edge

• A test exists to determine if a node is inside of the shape
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• A test exists to determine if a line segment intersects with the shape

These two tests are used extensively throughout the algorithm, so the more complex these

tests become, the longer the search will take.

3.3.3 The Algorithm

This section describes the search algorithm in depth. A node search is used in the description,

but note that an element search is identical with two minor exceptions. First, the exhaustive

search performed once the algorithm has completed is performed on a list of elements insead of

a list of nodes. Second, the list of elements returned by the algorithm may contain duplicates

because of the manner in which an element is determined to fall inside of a branch or leaf.

Therefore, these duplicates must be removed.

Before beginning the search, the following is required:

• An empty list, finalNodes, that will contain the final list of nodes that fall within the

shape

• An empty list, partialNodes, that will contain nodes that might fall within the shape

• A quadtree root, root, as an entry point to begin the search

• A shape, shape, that has the following variable and two functions:

– shape.testPoint - any single point that falls on the boundary of the shape

– shape.pointIsInside(Point p1) - a function that returns true if the point is inside

the shape, false otherwise

– shape.intersects(Branch b) and shape.intersects(Leaf l) - an overloaded func-

tion returns true if the shape intersects with the edges of the branch or leaf, false

otherwise
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The algorithm, defined in Algorithm 3.3, is an overloaded function that performs the search,

accepting either a branch or a leaf as its parameter. An overloaded helper function is provided,

AddAll(), that takes a list and a branch or leaf as parameters. If a branch is passed as a pa-

rameter, all nodes in every leaf below that branch will be added to the list. If a leaf is passed

as a parameter, all nodes in that leaf will be added to the list. Additionally, the EarlyExit()

function indicates that the search can be terminated.

Algorithm 3.3: Node Search Algorithm (Branch Search)
1 Algorithm SearchNodes(Branch currBranch)

2 if shape.intersects(currBranch) then
/* The current branch overlaps the shape */

3 for subBranch in currBranch do
4 SearchNodes(subBranch);
5 end
6 for subLeaf in currBranch do
7 SearchNodes(subLeaf);
8 end
9 else

10 if currBranch.contains(shape.testPoint) then
/* The shape is inside of the current branch */

11 for subBranch in currBranch do
12 SearchNodes(subBranch);
13 end
14 for subLeaf in currBranch do
15 SearchNodes(subLeaf);
16 end
17 EarlyExit();

end

18 if shape.pointIsInside(currBranch.NorthEast) then
/* The current branch is inside of the shape */

19 AddAll(currBranch, finalNodes);
20 else

/* The current branch is outside of the shape */
21 return;

end
end

The search algorithm applied to a leaf, defined in Algorithm 3.4, is almost identical to the
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algorithm applied to a branch, with the exception that the leaf terminates the recursion process.

Algorithm 3.4: Node Search Algorithm (Leaf Search)
1 Algorithm SearchNodes(Leaf currLeaf)

2 if shape.intersects(currLeaf) then
/* The current leaf overlaps the shape */

3 AddAll(currLeaf, partialNodes);
4 else
5 if currLeaf.contains(shape.testPoint) then

/* The shape is inside of the current leaf */
6 AddAll(currLeaf, partialNodes);
7 EarlyExit();

end

8 if shape.pointIsInside(currLeaf.NorthEast) then
/* The current leaf is inside of the shape */

9 AddAll(currLeaf, finalNodes);
10 else

/* The current leaf is outside of the shape */
11 return;

end
end

3.3.4 Explanation

The algorithm steps into the quadtree recursively checking for very specific relations between

the current branch or leaf and the target shape. At each recursion step a number of tests are

performed in order to determine the physical relationship between the shape and the branch or

leaf being tested. The order in which these tests are performed is very important. From these

relationships, it is possible to make deductions about the location of every node contained in

the quadtree with relation to the shape being tested.

First, a test is performed to determine if any of the four edges of the leaf or branch intersects

with the edge of the shape. If there is an intersection, the only conclusions that can be drawn are

that any nodes the leaf or branch contains may fall inside of the shape. Therefore, if the test was

performed on a branch, the algorithm recurses on that branch, and if the test was performed on
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a leaf, the nodes inside of that leaf are added to the list of nodes that could potentially fall inside

of the shape. The actual test for an intersection is performed using the function supplied with

the shape. Because this test is guaranteed to be performed at each step of recursion, choosing

a fast and efficient method is crucial to the performance of the algorithm.

If it is determined that there are no edge intersections between the shape and the current

leaf or node, one of three possible deductions can be made. Either the branch or leaf contains

the entire shape, as shown in Figure 3.7, the shape contains the entire branch or leaf, as shown

in Figure 3.8, or the branch or leaf is fully outside of the shape, as shown in Figure 3.9.

Figure 3.7: The Branch or Leaf Contains the Entire Shape

Figure 3.8: The Shape Contains the Entire Branch or Leaf

21



Figure 3.9: The Branch or Leaf is Fully Outside of the Shape

Testing to determine which of these three conditions is satisfied can be performed using only

two tests.

Branch or Leaf Contains Shape

The test to determine if the branch or leaf contains the entire shape is performed first. It consists

of a point-in-rectangle test and is always the same, regardless of the shape being tested. This

test is typically no worse computationally than the test for a point inside of the shape, which

is used to test for the other two conditions. Additionally, large portions of the quadtree can be

removed from searching when this condition is found to be true, so performing this test first is

typically beneficial.

Because the algorithm has already determined that there are no edge intersections, if any

arbitrary point that falls on the edge of the shape is contained inside of the branch or leaf being

tested, it can be deduced that the entire shape must also be contained inside of the branch

or leaf. Note that an interior point of the shape being contained inside of the branch or leaf

does not guarantee that the entire shape is inside of the branch or leaf. Therefore, the test is

performed using the required edge point provided with the shape.

The node in branch or leaf test can be performed a number of ways. Many generalized point-

in-polygon tests exist, including winding number and ray-casting, both of which are O(n) [20].

The winding number algorithm relies heavily on trigonometric floating point operations, making

it significantly slower than ray-casting [21]. The ray-casting algorithm as implemented in [20]
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relies on dozens of floating point operations and logical comparisons.

However, because all branches and leaves are guaranteed to be axis-aligned rectangles, a

simple bounds test can be performed. In this test, defined in Algorithm 3.5, a maximum of four

equality comparisons are performed, making it extremely fast.

Algorithm 3.5: Point Inside Square Test
bool PointIsInsideSquare(Point p, Branch branch)

if p.x ≥ branch.leftBound and
p.x ≤ branch.rightBound and
p.y ≥ branch.lowerBound and
p.y ≤ branch.upperBound then
return true;

else
return false;

end

If a branch is being tested and it is determined that the branch contains the entire shape, the

algorithm recurses over the branch’s children. If a leaf is being tested and it is determined that

it contains the entire shape, the only deduction that can be made is that any node contained

by the leaf may fall inside of the shape. Therefore, all of the nodes in the leaf are added to the

list of nodes that might fall inside of the shape. In either case, the location of the entire shape

is now known and any searching that remains to be done at or above the current level of the

quadtree can be eliminated.

Branch or Leaf Contained Within Shape or Fully Outside Shape

If the branch or leaf does not contain the shape, determining which of the two remaining possible

conditions holds true can be done using a single test. If one is determined to be true, the other

must be false, and similarly, if one is determined to be false, the other must be true.

Because it has been determined that there are no edge intersections, if any point on the

edge of the branch or leaf is inside of the shape, it can be deduced that the entire branch or

leaf must fall inside of the shape. For simplicity, this test is performed by determining if one of

the randomly chosen corner points of the branch or leaf falls inside of the shape (the northeast
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corner is used in Algorithms 3 and 4). The test itself is performed using the function that is

provided with the shape. This test function is also used to perform the exhaustive search over

nodes that may fall into the shape, so choosing a fast and efficient method is crucial to the

performance of the algorithm.

If a branch is being tested and it is determined that the branch falls entirely inside of the

shape, it can be deduced that every child of the branch also falls entirely inside of the shape.

Therefore, every node contained in every leaf below the branch is added to the list of nodes that

are guaranteed to fall inside of the shape. On the other hand, if it is determined that the branch

falls entirely outside of the shape, the branch and every node contained in every leaf below the

branch are ignored during the rest of the search because they are guaranteed to outside of the

shape.

Similarly, if a leaf is being tested and it is determined that it falls entirely inside of the shape,

all of the nodes contained in the leaf are added to the list of nodes that are guaranteed to fall

inside of the shape, and if it is determined that the leaf falls entirely outside of the shape, all of

the nodes contained by the leaf are ignored.

Summary

Table 3.1 summarizes the conditions being checked and the result that occurs if the condition

is met for both a branch and a leaf.
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Table 3.1: Effects of Conditions Met During the Search Algorithm

Condition Branch Leaf

Has intersection
with shape Recurse on children

Add all nodes to list of nodes
that could possibly be inside of

the shape

A point on the
shape edge is
inside bounds

Recurse on children and then
terminate search

Add all nodes to list of nodes
that could possibly be inside of
the shape and terminate search

A corner is inside
of the shape

Add the nodes of all children to
the list of nodes that are

guaranteed to be inside of the
shape

Add all nodes to the list nodes
that are guaranteed to be inside

of the shape

Else None of the nodes contained are inside of the shape

Exhaustive Search

Once the algorithm completes, the two lists will have finished populating and each node in the

the list of nodes that might fall inside of the shape needs to be tested individually. If the node

falls inside of the shape it is added to the list of nodes guaranteed to fall inside of the shape,

otherwise it is discarded. The exhaustive search tests are performed using the point inside shape

test provided with the shape. In the worst case, every node in the quadtree will need to be tested

using the exhaustive search, so choosing a very fast method of performing this test is important.
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3.4 Expected Performance

The following three sections describe how the algorithm is expected to perform in any given

scenario.

3.4.1 Theory

Determining the expected performance of the search algorithm analytically is difficult because

it is not possible to know a priori the subset of the quadtree that will actually be reached by the

algorithm for any given search. However, for any given quadtree, it is possible to quantify both

an upper and lower bound on the expected performance for any given search. These definitions

of these bounds are derived using the simple quadtree shown in Figure 3.10.

a

b c d e

f g h i j k l m n o p q

r s t u v w x y

Figure 3.10: A Simple Filled Quadtree

The terminology used in this example is as follows:

• A circle in the quadtree is called a quadtree element. Quadtree elements will be written in

bold italics (e.g., a)

• Every quadtree element is either a branch or a leaf. Branches are white and always have

four children. Leaves are blue and have no children.
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• A line connecting two quadtree elements is called an edge. Edges will be written in the

form ab, where the first letter indicates the parent branch and the second indicates the

child quadtree element.

• The solution is the set of leaves that are found by the algorithm.

• The solution size is the number of leaves in the solution.

Additionally, the following assumptions are made:

• The search will always begin at branch a .

• The only expensive operation being performed is tree traversal (i.e., following an edge

from a branch to a child of that branch).

• The cost of following an edge is constant.

At its core, the search algorithm simply determines which of the four edges of any given branch

to follow. Independent of any implementation specifics that define how these decisions are made,

the number of edges followed once a branch has been reached can always be 0, 1, 2, 3, or 4.

For example, should the algorithm choose to follow the edge ab, it can then choose to follow

any, or none, of the edges bf , bg , bh , or bi . This process is repeated recursively until either

the entire quadtree has been traversed or the algorithm decides not to follow any more edges.

Once the algorithm has completed, the solution is the set of leaves that have been reached. This

solution can be any possible subset of the quadtree, and is determined by how the edge-following

decisions are made (e.g., In the SMT implementation, the user supplies an arbitrary shape and

the decisions are made based on the physical relationship between the shape and the branch).

Because of the assumption that following an edge is the only expensive operation being

performed, the metric used to evaluate the performance of the algorithm for any given solution

needs to be the total number of edges that were followed in order to find that particular solution.

As an example, the solution in Figure 3.11 was found by following six edges (bold red edges

indicate edges followed during a solution).
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Figure 3.11: 6 Edges Followed, 2 Leaves Found

Therefore, the performance of this solution can be calculated to be 6× ce, where ce is the cost

of following an edge.

Additionally, because solutions can come from any subset of the full quadtree, it is possible

that there are many distinct solutions with the same solution size. As such, the performance

of the algorithm for a given solution size can vary. For example, the solution in Figure 3.12

also contains two leaves, but the solution was found by following only 3 edges. Therefore, the

performance of this solution is only 3× ce, meaning it was found twice as fast as the solution in

Figure 3.11.
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Figure 3.12: 3 Edges Followed, 2 Leaves Found

As a result, in order to determine the upper and lower bounds of the expected performance

of the algorithm as a whole, the best and worst possible performance for every possible solution

size must be found. Plotting these values reveals a graph that shows how the algorithm will

perform for any given solution size.

Producing the upper and lower bound solutions for a small quadtree such as the one in

Figure 3.10 is a very simple process that can be performed visually. As solutions are produced

for each solution size, they are plotted on a graph where the x-axis is the solution size (ranging

from 0 to n, where n is the total number of leaves in the quadtree), and the y-axis is the number

of edges followed in order to produce the solution (ranging from 0 to e, where e is the total

number of edges in the quadtree). For example, Figure 3.13 shows the minimum solution size

for which a single leaf is found.
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Figure 3.13: 1 Edge Followed, 1 Leaf Found

This solution followed one edge and found one leaf, so the point (1, 1) would be plotted. Similarly,

Figure 3.14 shows the maximum solution size for which a single leaf is found.

a

b c d e

f g h i j k l m n o p q

r s t u v w x y

Figure 3.14: 6 Edges Followed, 1 Leaf Found

This solution followed 6 edges and found one leaf, so the point (1, 6) would be plotted, producing

the graph in Figure 3.15, which now contains the minimum and maximum possible performance

for a solution size of one.
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Figure 3.15: Plot for a Solution Size of 1

Because these values represent the best and worst performance for a solution size of one,

it can be deduced the performance for any random solution containing one leaf is guaranteed

to fall in the range [1, 6]. Therefore, repeating this process for every possible solution size will

produce a plot that shows the performance of the algorithm for any solution size, as can be seen

in Figure 3.16.
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Figure 3.16: Performance Plot for All Solution Sizes

Connecting these points produces the exact upper and lower bounds of the performance of the

algorithm, as seen in Figure 3.17.
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Figure 3.17: Upper and Lower Bounds of the Sample Quadtree Performance
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A number of deductions can be made from this plot. First, the worst performance for any

given problem size will always be a result of visiting every branch in the quadtree before finding

any leaves (e.g., the solution in Figure 3.14). Once every branch in the quadtree has been visited,

following any remaining edge in the quadtree will result in finding a single leaf, which is why the

plot of the upper bound is linear. This is a property that is always true for the search algorithm,

independent of the quadtree shape or size, so the following can be said about the worst possible

performance of the algorithm:

The upper bound of the algorithm performance is

O(n) = b+ n

where n is the solution size and b is the total number of branches below the root

of the quadtree.

The best performance, on the other hand, will always come from the smallest breadth first

search solution for a given solution size. This solution is found when the algorithm always

chooses the leaf of a branch that has already been visited instead of visiting another branch in

order to find a leaf. For example, in Figure 3.13 the algorithm chose to follow edge ac to find a

leaf instead of first visiting one of the branches b, d , or e and then finding a leaf. Because the

number of leaves for any given branch will vary between quadtrees, it can be concluded that

the lower bound of the performance of the algorithm is dependent on the size and shape of the

quadtree. However, an absolute lower bound of the algorithm performance as applied to any

quadtree does exist. Consider the quadtree presented in Figure 3.18.
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Figure 3.18: A Quadtree with 4 Leaves

The best performance for solution sizes of 1, 2, 3, and 4 will always be 1, 2, 3, and 4, respectively.

For any quadtree with more than four leaves, however, at least one of the leaves will have to be

turned into a branch. So, adding four more leaves produces the quadtree in Figure 3.19.

Figure 3.19: A Quadtree with 7 Leaves

Now the best possible performance for a solution size of 4 is 5 because an edge has to be followed

in order to reach the fourth leaf.

Adding four more leaves to the quadtree will result in another leaf being turned into a

branch. If one of the three remaining leaves from the original quadtree is made a branch, the

best performance for a solution size of 3 will become 4. This can be avoided by converting one

of the four lowest level leaves into a branch instead, resulting in the quadtree in Figure 3.20.
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Figure 3.20: A Quadtree with 10 Leaves

This process of always converting one of the lowest level leaves into a branch continues

until the desired quadtree size is reached. The quadtree produced using this method will always

contain the solution with the absolute best performance possible from the algorithm for any

quadtree of equal or greater size. The following function, which describes the behavior of this

pattern, can be used to define the absolute lower bound on algorithm performance:

The lower bound of the algorithm performance is

O(n) =


0 n = 0

n+ (n−1)−(n−1) mod 3
3 0 < n < l

b+ n n = l

where n is the solution size, l is the number of leaves in the quadtree, and b is

the number of branches below the root of the quadtree.

Finally, plotting these two bounding functions gives the area in which algorithm performance

must always fall, as shown in Figure 3.21.
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Figure 3.21: Upper and Lower Bounds for Any Quadtree

3.4.2 Verification

Bounds Validation

Validation of the aforementioned limits is done using an ADCIRC mesh with approximately

30,000 nodes and 60,000 elements. Five thousand random circles are produced and the circle

shape search implementation of the search algorithm is applied using each circle. As the algo-

rithm runs, the number of leaves reached and the number of edges followed are counted. The

results are plotted in Figure 3.22.
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Figure 3.22: Actual vs. Expected Performance

Although it can be seen relatively clearly that the algorithm is performing as expected,

plotting results on a log-log axis can be helpful in visualizing the results, especially when a very

large solution size is possible. The same results are plotted on a log-log axis in Figure 3.23.

Zooming into the higher end of the performance bounds of the log-log plot reveals that the

algorithm has stayed within the expected bounds for every case, as shown in Figure 3.24.
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Figure 3.23: Actual vs. Expected Performance (Log Axes)
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Figure 3.24: Actual vs. Expected Performance (Log Axes, Zoomed)

38



Additionally, it is clear that the results specific to the shape search implementation tend

towards the lower bound of the expected performance. Recall that the upper bound on perfor-

mance is limited by the case in which every branch is visited before finding any leaves. The

shape search algorithm is implemented in a way such that if a branch is visited, at least one of

the children of that branch will always be visited. As a result, the performance curve remains

separated from the upper bound until visiting every branch is required to achieve the given

solution size.

Timing Verification

The performance bounds presented are based on the assumptions that the only cost is traversing

an edge and that the cost of traversing an edge is constant. In the real world, this will not be the

case. However, if it is the case that traversing an edge is the most expensive operation, then it

can be assumed that the general shape of the actual performance curve will follow the shape of

the theoretical curve. The performance results plotting in Section 3.6 show that this assumption

holds true for the shape search implementation of the algorithm.

3.4.3 Effect of Non-Full Leaves

The theoretical bounds presented are also based on the assumption that reaching a leaf adds

a value of one to the size of the solution. This may not be true for every implementation of

the algorithm, as is the case in the shape search algorithm. In the shape search, the size of the

solution can increase by at most the bucket size of the quadtree. For example, if a quadtree has

250 nodes inside of a leaf, the algorithm may visit that leaf and determine that only 50 of the

nodes fall within the circle, increasing the solution size by only 50. Therefore, it is possible that

the algorithm can visit all branches and some nodes before reaching a given solution size. This

results in a vertical shift of the upper bound.

This effect can be easily seen with an example problem that contains leaves with 1 or 0

nodes. A random search is performed over a mesh containing 3,060 nodes and 5,900 elements.
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The quadtree containing the mesh data has a bucket size of 1, and there are 3,060 leaves that

contain a node and 880 that do not. If the algorithm reaches a leaf that contains a node, the

node is always added to the solution. The results of the test are plotted alongside the original

expected upper bound as shown in Figure 3.25.
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Figure 3.25: Effect of Non-Full Leaves on Performance

Because every leaf can contain a maximum of one node, the worst performance for every

solution size will occur when the algorithm visits every branch and empty leaf before finding a

leaf with a node. This results in a linear upward shift of the original upper bound, equal to the

total number of empty leaves, which in this case is 880.

The shift experienced by the upper bound as a result of non-full leaves will not always be

linear. As the bucket size changes and the total number of nodes within a leaf varies, so will the
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rate at which the shift occurs.

3.5 Implementation

Consistent with the design goals, the C++ code used to implement the algorithm takes advantage

of polymorphism in order to provide a simple codeset that can be easily extended by developers

to fit their specific needs. The search algorithm functionality is provided as a virtual class

called QuadtreeSearch. Subclasses of QuadtreeSearch are then made for each individual type

of shape for which a search will be performed. Three virtual functions from the QuadtreeSearch

parent class, corresponding to the required functions outlined in Section 3.3.3, are defined in

each subclass. In addition, the point that falls on the edge of the shape is defined as a class

variable in QuadtreeSearch and it must be set by the subclass before a search begins. This

typically occurs when defining attributes of the shape, so this implementation defines a unique

SetShapeAttributes() function in each subclass. The partial class diagram in Figure 3.26 shows

these relationships using the four shapes provided in this implementation (helper functions and

data types are hidden for clarity; the full source code for each of these classes can be found in

the appendices).

Using this framework is beneficial from a development standpoint because the search algo-

rithm code is only written a single time and the specific search types (i.e., shapes) are separated

into smaller and more useful and portable classes. A drawback, however, is that the algorithm

itself cannot be modified without changing the behavior of all subclasses. This prevents opti-

mizations that could be made to the algorithm for specific classes of shape (such as convex

shapes, as outlined in Section 3.7). However, all non-public functions are implemented as pro-

tected functions should a developer choose to rewrite any of the search algorithm components

in order to accomodate for these optimizations.
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QuadtreeSearch

# shapeEdgePoint : Point

+ FindNodes(root : branch*) : std::vector<Node*>
+ FindElements(root : branch*) : std::vector<Element*>
# PointIsInsideShape(Point p1) : bool
# ShapeIntersects(branch *currBranch) : bool
# ShapeIntersects(leaf *currLeaf) : bool

CircleSearch

- x : float
- y : float
- r : float

+ SetCircleAttributes(x, y, r)
# PointIsInsideShape(p1) : bool
# ShapeIntersects(currBranch) : bool
# ShapeIntersects(currLeaf) : bool

RectangleSearch

- l : float
- r : float
- b : float
- t : float

+ SetRectangleParameters(l, r, b, t)
# PointIsInsideShape(p1) : bool
# ShapeIntersects(currBranch) : bool
# ShapeIntersects(currLeaf) : bool

PolygonSearch

- polygonPoints : std::vector<Point>

+ SetPolygonAttributes(polyLine)
# PointIsInsideShape(p1) : bool
# ShapeIntersects(currBranch) : bool
# ShapeIntersects(currLeaf) : bool

PointSearch

- x : float
- y : float

+ SetPointAttributes(x, y)
# PointIsInsideShape(p1) : bool
# ShapeIntersects(currBranch) : bool
# ShapeIntersects(currLeaf) : bool

Figure 3.26: Partial Class Diagram of Shape Search Classes
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3.5.1 The QuadtreeSearch Class

See Appendix B for source code

The QuadtreeSearch class is a virtual class that provides the functionality of the search algo-

rithm. Specifically, it has only two public functions, called FindNodes(branch*) and

FindElements(branch*), that can be called to initiate a search for either a set of nodes or a

set of elements, respectively. When either of these functions is called, the recursive search be-

gins with a call to either SearchNodes(branch*) or SearchElements(branch*), depending on

what is being searched for. These private functions of the QuadtreeSearch class are the direct

implementation of the search algorithm described in Section 3.3.3.

Three protected virtual functions, PointIsInsideShape(Point),

ShapeIntersects(branch*), and ShapeIntersects(leaf*) are declared, making the class vir-

tual. The purpose of these three virtual functions is outlined in Section 3.3.3, and they must be

implemented by every subclass.

Finally, a protected class variable called shapeEdgePoint of type Point1 is defined but never

assigned a value. This is the point that falls on the edge of the shape, and it is up to the subclass

to define it before beginning the search.

3.5.2 The CircleSearch Class

See Appendix C for source code

The CircleSearch class is a subclass of the QuadtreeSearch class that can search for nodes or

elements that fall within a circle. In order to define the circle properties and set the value of the

point that falls on the circle edge before a search begins, the SetCircleParameters(float x,

float y, float z) function is called.

A circle used to perform a search in the CircleSearch class is defined by a center point with

x- and y- coordinates and a radius. The PointIsInsideShape function uses the Pythagorean
1See Appendix A for data type definitions
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Theorem to determine if a point falls inside of the circle. To avoid calculating square roots,

which can be computationally costly, the following condition is tested:

(x− xcenter)
2 + (y − ycenter)

2 < r2

where xcenter and ycenter are the x- and y- coordinates of the circle center, r is the circle radius,

and x and y are the x- and y- coordinates of the point being tested. If this condition holds true,

the point lies inside of the circle.

The following procedure is used in the ShapeIntersects functions to determine if the circle

has an intersection with a branch or leaf. For each edge of the branch or leaf, determine the

point on the infinite line created by the segment that is closest to the circle center by solving

for u in the parameterized equation of a line:

P1 + u (P2 −P1)

where P1 and P2 are the endpoints of the edge. If this value is in the range [0, 1], then the

point falls on the line segment and it is the point on the segment that is closest to the circle

center. Otherwise, one of the end points of the line segment is the point closest to the circle

center, so the two distances are computed in order to determine which is closest. Finally, it can

be concluded that if the distance from the circle center to the point on the line segment that is

closest to the circle center is less than the circle radius, the circle and line segment intersect.

3.5.3 The RectangleSearch Class

See Appendix D for source code

The RectangleSearch class is a subclass of the QuadtreeSearch class that can search for nodes

or elements that fall within an axis-aligned rectangle. In order to define the rectangle properties

and set the value of the point that falls on the edge of the rectangle before a search begins, the

SetRectangleParameters(float l, float r, float b, float t) function is called.
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A rectangle used to perform a search in the RectangleSearch class must be axis-aligned and

is defined by four bounding values, the left, right, bottom, and top bounds. The PointIsInsideShape

function simply compares the points with the bounds in order to determine if it falls inside of

the shape. If the following is true, the point is inside of the rectangle:

[l ≤ x ≤ r] and [b ≤ y ≤ t]

where l, r, b, and t correspond to the left, right, bottom, and top bounds, and x and y are the

coordinates of the point.

Because branches, leaves, and the rectangle are all axis aligned, an initial test is performed

using simple logic for the ShapeIntersects functions. If the right side of the rectangle is to

the left of the left bound of the branch/leaf, no intersections are possible, and if the left side of

the rectangle is to the right of the right bound of the branch/leaf, no intersections are possible.

Similarly, if the top of the rectangle is below the lower bound of the branch/leaf, no intersections

are possible, and if the bottom of the rectangle is above the upper bound of the branch/leaf, no

intersections are possible. If all of these conditions are met, no possible edge-edge intersections

are possible. However, two additional cases must be considered. If the rectangle is fully inside

of the branch/leaf or if the branch/leaf is fully inside of the rectangle, the logic determines that

there is an intersection. Because of the ordering of the algorithm, this is not desirable and these

cases must indicate that there is no intersection for the algorithm to work as expected. As such,

a reordering of the algorithm to test for these cases before testing for intersections could produce

some performance benefits, and is discussed further in Section 3.7.

3.5.4 The PolygonSearch Class

See Appendix E for source code

The PolygonSearch class is a subclass of the QuadtreeSearch class that can search for nodes

or elements that fall within a polygon with three or more edges. A polygon used in the polygon
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search is defined as a list of three or more points in which every pair of adjacent points defines an

edge of the polygon. The SetPolygonParameters(std::vector<Point> polyLine) function is

called before a search is performed in order to define the polygon and set the value of the point

that falls on the edge of the polygon.

There are a number of existing algorithms for determining if a point falls inside of a polygon,

most of which rely on the even-odd rule or winding number concepts [22]. This implementation

uses the PNPOLY algorithm developed by Franklin [23] for the PointIsInsideShape function

because it is compact (only 7 lines) and performs very well [22].

In order to determine if the polygon intersects with a branch or leaf for the ShapeIntersects

functions, each segment of the polygon is tested against each edge of the branch or leaf. This

test is performed by determining if the quadrilateral formed by the four end points is one in

which the vertices alternate between the two segments. Specifically, the two line segments ab

and cd intersect if and only if only one of the two triples a, b, c and a, b, d is in counterclockwise

order [24], as illustrated in Figure 3.27.
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Figure 3.27: Orientations Being Determined for Two Line Segments
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3.5.5 The PointSearch Class

See Appendix F for source code

The PointSearch class has a slightly different functionality from the rest of the shape classes,

and therefore requires that a few functions the search algorithm uses for tests be slightly modi-

fied. Nonetheless, the algorithm itself remains the same.

The goal when performing a node search in this class is to find the node that is closest to a

provided point. This is a well-known and heavily researched problem, typically called the nearest

neighbor search, for which there are a number of very efficient solutions. Many variations of the

solution can perform the search in O(log n) time, including implementations that use Voronoi

diagrams [20] and others that use k-d trees [25, 26]. These solutions typically require their own

preprocessing so they are not ideal considering our space has already been partitioned into a

quadtree. Other fast solutions exist that avoid preprocessing by simply “walking through” the

mesh [27]. However, using the algorithm described in this thesis is both simple and provides

adequate performance.

The goal when performing an element search in this class is to find the element that contains

the provided point. This is the same problem being solved in the PolygonSearch class but

because this search is looking for an element, which is always a triangle, a simpler test can be

used. In this implementation, the barycentric coordinates of the provided point are calculated

in order to determine if the point falls within the triangle created by the element.

Searching for both nodes and elements is performed the same way. Because a single point

is provided, the algorithm only needs to find the single leaf that contains the point. Once that

leaf has been found, a specialized exhaustive search is performed on the nodes or elements in

that leaf, depending on what is being searched for.

The PointInsideShape function must always return false, and the

ShapeIntersects functions return true or false depending on if the point falls inside the bounds

of the branch or leaf. When the search algorithm is run, this has the effect of finding the leaf

that contains the point and storing all of the nodes or elements from that leaf in the list of nodes
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or elements that might fall inside of the shape.

The nodes and elements in this list are then searched using a specialized search that deter-

mines either the closest node or the element that contains the point. The node search calculates

the distance between the point and every node, adding the closest node to the list of nodes that

are guaranteed to fall within the shape. This list, which contains only a single node, is returned

as the solution. The element search steps through the list of candidates, and once it finds an

element that contains the point, adds that element to the list of elements that are guaranteed

to fall within the shape and stops searching. This list, which contains only a single element, is

returned as the solution.

3.6 Performance Results

The following sections demonstrate the performance achieved using the algorithm defined in

Section 3.3.3 for various shapes.

3.6.1 Comparison with Exhaustive Search

In this section, the performance of the search algorithm is compared against the performance

of the exhaustive search for each shape in which every node or element in the mesh is tested to

determine whether or not if falls within the provided shape. This comparison is made in order to

show the algorithm performance using a number of different shapes. For each shape, it may be

possible to create a search algorithm that performs better than the algorithm presented, but the

goal here is to demonstrate consistent performance across a variety of shapes. To our knowledge,

there are no other algorithms in publication that search for the set of points inside of an arbitrary

shape, and so exhaustive search is the only alternative with which a valid comparison can be

made.

The system on which all tests in this thesis are performed has an Intel Core i7 (2.8 GHz)

CPU with 8 GB of RAM running Ubuntu 12.04. Each shape is tested using an ADCIRC mesh

with approximately 5 million nodes and 10 million elements, and a quadtree bucket size of 250
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nodes is used. 1000 random variations of the shape are generated and the search algorithm and

exhaustive search methods are tested using each variation of the shape for both the node and

element search. Each individual search is timed and the results are plotted. The x-axis contains

the number of nodes or elements found in any given search (i.e., the solution size), and the

y-axis contains the time in seconds required to find the given solution size. Results are plotted

on log-log axes in order to more effectively show performance results.
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Figure 3.28: Circle Search Performance Results

As expected, the results plotted in Figure 3.28 show that the algorithm performs very well when

a small number of nodes or elements are being searched for. Additionally, it can be seen that the
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exhaustive search always takes approximately the same amount of time to complete a search,

independent of the number of nodes or elements being searched for. As the number of nodes or

elements being searched for increases, the performance of the algorithm decreases, approaching

the performance of the exhaustive search. These results closely mirror the predicted performance

curve outlined in Section 3.4.

Rectangle Search
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Figure 3.29: Rectangle Search Performance Results

The rectangle search performs in a similar manner to the circle search. The results plotted in

Figure 3.29 show that the search completes very quickly when searching for a small number of

nodes or elements but performance approaches the level achieved by the exhaustive search as
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the number of nodes or elements being searched for increases. While the results also mirror the

expected performance outlined in Section 3.4, the shape of the performance curve is slightly

different from that of the circle search. This difference can be attributed to variations in the

complexity of the test functions supplied with each of the shapes.

Polygon Search

The polygon performance benchmarking is performed using two different polygon sizes, one

containing 10 edges and one containing 30 edges. The results of the tests performed using a 10-

edge polygon are plotted in Figure 3.30 and the results of the tests performed using a 30-edge

polygon are plotted in Figure 3.31.
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Figure 3.30: 10-Edge Polygon Search Performance Results
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Figure 3.31: 30-Edge Polygon Search Performance Results

Again, in both cases the algorithm performs very well when a small number of nodes or

elements is selected, with performance decreasing as the number of nodes or elements selected

increases. The performance of the algorithm in the 30-edge case decreases much more rapidly

than in the 10-edge case. This is due to the increased cost of performing tests on a 30-edge

polygon over a 10-edge polygon.

Point Search

The point search is performed slightly differently than in the testing of the other shapes. In

this test, every individual node or element is searched for specifically by using either the exact

coordinates (in the case of a node search) or the center point (in the case of an element search)

as the point being searched for. The exhaustive search is performed by iterating through a list
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that contains all nodes or elements that is sorted by node or element number (as defined in the

fort.14 file). In the exhaustive node search, the distance between the point and all nodes is

calculated and the closest node is chosen. In the element search, a test is performed to determine

if the point falls inside of each element, starting at the beginning of the list containing the

elements and proceeding down the list until the appropriate element is found. Once the element

is found, the search is terminated. The results of both searches are plotted in Figure 3.32 with

the node search results on the left and the element search results on the right.
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Figure 3.32: Point Search Performance Results

The x-axis in this plot represents the node or element number, and is therefore a good

graphical representation of the entire ordered list of nodes or elements. Only every 20,000th

node or element is plotted to increase clarity.
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3.6.2 Analysis of Comparison with Exhaustive Search

Recall from Section 2.1 that the target completion time for a node or element search is less

than 100 milliseconds (10−1 seconds). The completion time for the exhaustive search in both

the circle search and rectangle search are both very close to this limit and in both polygon

searches, this limit is exceeded. The exhaustive search is exceptionally slow in the polygon

element search with some completion times exceeding 3 seconds. The completion time for the

search algorithm in all cases, however, is far below this limit for a small number of nodes or

elements, only approaching this limit, and rarely surpassing it, as the solution size approaches

the number of nodes or elements in the entire domain. This is an acceptable tradeoff in the

context of subdomain modeling because typically only smaller numbers of nodes and elements

need to be found.

The decrease in performance corresponding to an increase in the number of nodes or elements

being searched for in all cases except the point search is a result of using a quadtree to store

the mesh data. As the search shape increases in size, the number of branches and leaves that

can be completely excluded from the search decreases, resulting in a decreased performance

caused by recursion, as described in Section 3.4. Additionally, the shape of the curves produced

by these tests closely mirrors the expected shape of the expected upper and lower bounds on

performance outlined that section. Differences between the actual and expected performance

in each test case, as well as differences between the individual test cases, can be attributed

to additional computational overhead. Every time a branch or leaf is recursed upon, there is

overhead associated with determining the position of that branch or leaf in relation to the

shape. The magnitude of this additional cost depends on the shape being tested. For very

complex shapes, the overhead associated with these tests can become very large. Variations

in performance can also come from the overhead associated with building the two lists used

in the algorithm. Copies of the nodes or elements contained in the leaves are put into these

lists in order to maintain the integrity of the quadtree data for future searches. The lists are

implemented as C++ standard library vectors and the copying is done using range operations,
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which is considered best practice [28]. Nonetheless, there is still overhead, and the accumulative

cost of this overhead increases as the total number of nodes or elements included in the search

increases. Finally, as the size of the shape increases, the number of nodes or elements that need

to be tested using exhaustive search also increases, which can produce a significant reduction in

performance, especially if the point inside shape test is costly.

The performance benefit in both the node and element point search cases is clear. The

exhaustive node search takes constant time because every node has to be tested in each search.

The algorithm node search also performs an exhaustive search at the completion of recursion,

taking approximately constant time, but the number of nodes being tested is the quadtree

bucket size instead of the mesh size. The exhaustive element search is linear in the distance of

the element from the beginning of the list, as can be seen in the plot. The algorithm element

search on the other hand, performs in almost constant time based on the quadtree bucket size.

3.6.3 Effect of Bin Size on Performance

The effect of the quadtree bin size on search performance is tested using four different bin sizes

in the node circle search over an ADCIRC mesh with approximately 5 million nodes and 10

million elements. For each bin size, 500 random circles are generated and the search algorithm

is timed. The results are plotted in Figure 3.33 with the number of nodes found in the x-axis

and the time required to complete the search on the y-axis. Two plots of the same data are

provided, one with logarithmic axes and one with linear axes.
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Figure 3.33: Comparison of Search Performance Using Varying Bin Sizes

As the plot shows, the time required for the algorithm to complete is dependent on both

the bin size and the solution size. When the solution size is very small, a smaller bin size is

preferable. This can be seen in the logarithmic plot where the bin size of 100 performs better

than the bin size of 1,000, the bin size of 1,000 performs better than the bin size of 10,000, and

the bin size of 10,000 performs better than the bin size of 100,000. The reduced performance in

increasing bin sizes aligns with the theory developed in Section 3.4.3 that more non-full leaves

in the quadtree will result in an increased upper bound on performance.

On the other hand, as the solution size increases, the larger bin sizes begin to perform better

and the smaller bin sizes perform worse, as can be seen in the linear plot. This effect can be

attributed to the cost of performing a recursion and list expansions. When very large bin sizes

are used, fewer recursions and fewer list expansions are needed to reach a large solution size, as

opposed to when very small bin sizes are used, in which case a large number of recursions and

list expansions are required in order to reach the same solution size.

Because ADCIRC subdomain modeling typically involves selecting very small numbers of

nodes or elements from a mesh, a smaller bin size seems preferable. However, there is a tradeoff

that occurs with the preprocessing time required to build the quadtree that contains the mesh
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Figure 3.34: Comparison of Quadtree Build Time With Average Search Time

data.

To demonstrate this tradeoff, Figure 3.34 shows the average time it takes to perform a single

element search compared with the time it takes to build the quadtree on which the search is

being performed. In order to create this plot, eight different quadtrees were created from the

same 5 million node, 10 million element mesh. In each of these quadtrees, 10,000 individual

element searches were performed, and an average search time was determined by dividing the

total time it took to perform the searches by 10,000. In the figure, each data point represents a

different quadtree size (as noted by the value in black next to each data point).

The tradeoff between preprocessing of mesh data and real-time mesh data selection is clearly

seen in Figure 3.34, and one can see how the choice of quadtree bin size could vary between

applications. From the user’s perspective in an application such as SMT, it may be benefitial

to remove a few seconds of loading time at the expense of a few milliseconds of responsiveness

during element selection (which could go unnoticed by the user), whereas if a user will be
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programatically performing millions of point searches over a quadtree, a few extra seconds of

preprocessing may be benefitial in reducing overall run time.

The assembly of the quadtree is a highly recursive process. Nodes are added to leaves one at

a time, and when the number of nodes in a leaf exceeds the bin size, the leaf is converted into a

branch, which requires that every node in the leaf be re-added to the new branch. A smaller bin

size results in a larger number of leaf to branch conversions, which is a time consuming process.

Table 3.2 and Figure 3.35 show the time required to build five different quadtrees for the 5 million

node, 10 million element mesh. As outlined in Section 2.1, a maximum time of 10 seconds is used

as a benchmark for unit tasks. Assembling the quadtree typically is included in the process of

opening an ADCIRC mesh, which also includes reading the fort.14 file. Therefore, a quadtree

size needs to be chosen, based on the largest expected mesh size, such that the time required to

read the data from file and assemble it into a quadtree is less than 10 seconds.

Table 3.2: Assembly Time For Various Bin Sizes

Bin Size Time (s)

10 433.750

100 14.620

1000 8.290

10000 6.510

100000 5.410
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3.7 Optimization

Optimizing the algorithm typically involves attempting to reduce the amount of overhead caused

by the operations performed within the algorithm itself in order to force the performance curve

to approach the theoretical best performance curve.

Convex Shapes

This optimization attempts to alleviate some of the calculation overhead by removing some of the

general applicability of the algorithm, allowing a search to be performed only on convex shapes.

The logic behind the algorithm remains essentially untouched, but modifying certain minor

attributes could produce performance benefits for specific classes of shapes. This is achieved by

reordering the tests that are performed to determine the location of a branch or leaf in relation

to the shape such that more expensive tests come later in the algorithm, with the intent that
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fewer of them need to be performed.

The optimization of the algorithm for convex shapes relies on the fact that if all four corners

of a leaf or branch (which is rectangular) fall inside of the shape, there can be no edge-edge

intersections and the entire leaf or branch is guaranteed to fall inside of the shape. This means

that the first test performed in the algorithm can be to determine if the leaf or branch falls

inside of the shape, which for many convex shapes is a much cheaper operation than finding

edge-edge intersections.

Next, if the number of corners of the leaf or branch inside of the convex shape is equal to

one, two or three, then an edge-edge intersection is guaranteed. Again, this removes potentially

costly operations. If none of the corners of the leaf or branch are inside of the convex shape, a

test is performed to determine if the entire shape falls inside of the branch or leaf. If it does,

the algorithm recurses and performs an early exit once that recursion completes. Otherwise, a

final edge-edge intersection test is performed. If there is an edge-edge intersection, the recursion

process continues, otherise the branch or leaf is entirely outside of the shape.

This modified version of the algorithm is outlined in Algorithm 3.6 and Algorithm 3.7.
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Algorithm 3.6: Search Algorithm for Convex Shapes (branch)
1 Algorithm SearchNodes(Branch currBranch)

2 cornerInShapeCount = 0;
3 if shape.pointIsInside(currBranch.NorthEast) then
4 cornerInShapeCount += 1;
5 if shape.pointIsInside(currBranch.SouthEast) then
6 cornerInShapeCount += 1;
7 if shape.pointIsInside(currBranch.NorthWest) then
8 cornerInShapeCount += 1;
9 if shape.pointIsInside(currBranch.SouthWest) then

10 cornerInShapeCount += 1;

11 if cornerInShapeCount == 4 then
12 AddAll(currBranch, finalNodes);
13 else if cornerInShapeCount != 0 then
14 for subBranch in currBranch do
15 SearchNodes(subBranch);

end
16 for subLeaf in currBranch do
17 SearchNodes(subLeaf);

end
18 else if currBranch.contains(shape.testPoint) then
19 for subBranch in currBranch do
20 SearchNodes(subBranch);

end
21 for subLeaf in currBranch do
22 SearchNodes(subLeaf);

end
23 EarlyExit();
24 else if shape.intersects(currLeaf) then
25 for subBranch in currBranch do
26 SearchNodes(subBranch);

end
27 for subLeaf in currBranch do
28 SearchNodes(subLeaf);

end
end
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Algorithm 3.7: Search Algorithm for Convex Shapes (leaf)
1 Algorithm SearchNodes(Branch currLeaf)

2 cornerInShapeCount = 0;
3 if shape.pointIsInside(currLeaf.NorthEast) then
4 cornerInShapeCount += 1;
5 if shape.pointIsInside(currLeaf.SouthEast) then
6 cornerInShapeCount += 1;
7 if shape.pointIsInside(currLeaf.NorthWest) then
8 cornerInShapeCount += 1;
9 if shape.pointIsInside(currLeaf.SouthWest) then

10 cornerInShapeCount += 1;

11 if cornerInShapeCount == 4 then
12 AddAll(currLeaf, finalNodes);
13 else if cornerInShapeCount != 0 then
14 AddAll(currLeaf, partialNodes);
15 else if currLeaf.contains(shape.testPoint) then
16 AddAll(currLeaf, partialNodes);
17 EarlyExit();
18 else if shape.intersects(currLeaf) then
19 AddAll(currLeaf, partialNodes);

end

The modified code used to benchmark this method can be found in Appendix G. It is

implemented as a subclass of the CircleSearch class only for the purposes of this test. An

implementation requiring general applicability to all convex shapes should be subclassed from

the QuadtreeSearch class. Benchmarking of the modified algorithm is performed on the same

5 million node, 10 million element ADCIRC mesh. One thousand random circles are generated

and the time required to find the elements is measured and plotted in Figure 3.36.
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Figure 3.36: Performance of Algorithm Modified for Convex Shapes

In general, it appears that the modified version of the code performs better than the original.

The magnitude of this performance benefit in this case is fairly small, so for the purposes of

this implementation the specialized code is not needed. However, the modified algorithm may

be desirable for convex shapes that have very expensive edge-edge intersection tests.
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Chapter 4

Case Studies

The following two case studies aim to present SMT by demonstrating how it is used to perform

the most basic functions that are essential to subdomain modeling.

4.1 Quarter Annular

The Quarter Annular case study is used to present the user interface layout and to demonstrate

the workflow of the features of SMT that have been implemented at the time of this writing.

This includes creating a project, creating subdomains, and running both full and subdomains in

ADCIRC. Editing subdomains and analyzing results are both features that continue to undergo

development.

Upon starting the SMT program, the user is presented with the window in Figure 4.1. The

main window itself is split into two main regions. The region on the left contains the work

modules (Project Explorer, Create New Subdomain, Edit Subdomain, ADCIRC, and Analyze

Results) which are ordered from top to bottom based on the order in which they typically will

be used. Above the Project Explorer is a toolbar consisting of six icons.
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Figure 4.1: The Initial SMT Window

These icons, from left to right, are:

• New Project - Create a new project.

• Open Project - Open an existing project.

• Add File - Add a file to the current project.

• Edit Preferences - Open the project preferences window.

• Save Project - Save the current project.

• Open File - Open a file for viewing (the file will not be added to the current project). If

the file is an ADCIRC mesh file, it will be displayed as a mesh in the display window.

The region on the right contains the display window. This is where the user will interact

with an ADCIRC mesh. Below the display window is a toolbar that displays the properties of

the currently visible mesh (number of nodes, number of elements, number of timesteps if the
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domain has been run) on the left. On the right, the toolbar shows the current coordinates of the

mouse pointer in the coordinate system of the currently visible mesh, as well as an undo and a

redo button.

The top of the main window contains a menu bar with File, Edit, Project, Display, ADCIRC,

and Help menus available. These menus contain all of the same functionality of the modules and

tool buttons already presented as well as additional supplemental features. The entire process

outlined in this case study can be accomplished without accessing any of these menus, so they

will not be referenced.

To create a new project, the New Project menu button is pressed, presenting the dialog in

Figure 4.2. In this dialog, the user chooses a name for the new project, as well as the directory in

Figure 4.2: The New Project Dialog
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which it will be created. Because a single full domain is associated with each SMT project, the

required full domain files must be chosen. The only two files required to make a subdomain are

full domain fort.14 and fort.15 files. If the “Fill fields using files from fort.14 directory” option

is selected, the dialog will automatically populate the rest of the fields with the appropriate files,

if they exist in the same directory as the chosen fort.14 file, otherwise the user is free to choose

the files individually. The user also has the option of using symbolic links, which can be helpful

in reducing redundant data in the file system, especially when using large files, such as ADCIRC

meteorological files. If a symbolic link is not used, the file will be copied into the new project

directory.

Upon creating a new project, which in this case study has been named “Quarter Annular”,

the project is displayed as shown in Figure 4.3. The display window now contains an interactive

Figure 4.3: The New Quarter Annular Project

67



image of the full domain. The user can zoom by scrolling and pan by left-clicking and dragging.

Additionally, the toolbar below the display window and the Project Explorer module have

been populated with new data. The toolbar shows that the full domain contains 63 nodes

and 96 elements, and the mouse pointer is located at the coordinates (629.3438, 3013.8594).

The Project Explorer shows the tree layout of the current state of the project. This data will

always be presented as shown in the tree in Figure 4.4. The current project does not have any

Project Name

Full Domain

fort.14

fort.15

etc.

Sub Domains

Subdomain 1

fort.14

fort.15

etc.

Subdomain 2

fort.14

fort.15

etc.

etc.

Figure 4.4: The Project Layout

subdomains (because none has been created yet), so the “Sub Domains” branch of the tree

contains no data. Next, in order to create a new subdomain, the user clicks on the “Create New

Subdomain” module, displaying the module as shown in Figure 4.5.
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Figure 4.5: The Create New Subdomain Module

The “Create New Subdomain” module presents the user with four tools that can be used to

either select or deselect elements:

• - Select or deselect individual elements

• - Select or deselect elements by drawing a circle

• - Select or deselect elements by drawing a square

• - Select or deselect elements by drawing a polygon

Elements for this subdomain will be selected using the polygon tool. When the polygon tool is

selected, every left click on the display window will drop a vertex of the polygon. A double-click

will drop the final vertex and select the elements that fall inside of the polygon, as shown in

Figures 4.6 and 4.7.
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Figure 4.6: Selecting a Polygon in the Quarter Annular Project

Figure 4.7: The Elements Selected Using the Polygon Tool
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Every element that has at least one node inside of the polygon is now selected and the outer

and inner boundaries of the subdomain are displayed as bold lines. Notice that the properties

of the subdomain are now listed below the selection tool buttons. These properties are updated

as elements are selected and deselected by the user. Additionally, the undo button below the

display window is now clickable and clicking it will undo the previous selection or deselection as

well as activate the redo button.

Now that the appropriate elements have been selected, the user presses the “Create Sub-

domain” button in the “Create New Subdomain” module, displaying the dialog shown in Fig-

ure 4.8. In this dialog, the user chooses a display name for the subdomain, the directory in which

Figure 4.8: The Create New Subdomain Dialog

to store the subdomain, the version of the subdomain method to use (a second, newer version

of the subdomain method which produces more accurate results is being developed alongside

SMT [29]), and the recording frequency (see thesis by Altuntas [2] for a definition). Note that

the subdomain version and record frequency will only be options for the first subdomain created

in a project. This is because these values must match for every full domain - subdomain pair in

the project. Once these fields have been populated, the user presses the OK button to create the

new subdomain. In this case, the name chosen for the subdomain is “Polygon”. When the new

subdomain is created, it will automatically be selected in the Project Explorer and displayed in

the display window, as seen in Figure 4.9. At this point, the user is free to either run the full
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Figure 4.9: The Polygon Subdomain of the Quarter Annular Project

domain to record boundary conditions, edit the subdomain to make localized changes (a feature

currently under development), or create more subdomains.

In order to run the full domain, the user clicks on the “ADCIRC” module, displaying the

module as shown in Figure 4.10. The “ADCIRC” module contains two buttons and a list. Only

the “Run Full Domain” button will be active until the full domain has successfully completed.

To run the full domain, press the “Run Full Domain” button to display the dialog shown in

Figure 4.11. The user chooses the location of the ADCIRC executable and whether they would

like to open a separate shell window in which to run ADCIRC (this allows the user to continue

working in or to exit SMT), or to run ADCIRC directly from SMT (which prevents SMT from

performing any actions until the run is complete, and is not recommended). Clicking OK begins

the full domain run.
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Figure 4.10: The ADCIRC Module

Figure 4.11: The Run ADCIRC Dialog
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Once the full domain run is complete, the list of subdomains in the project and the “Run

Selected Subdomains” button will become active, as seen in Figure 4.12. From this point, running

any number of subdomains is as simple as selecting them from the list and clicking the “Run

Selected Subdomains” button. The Run ADCIRC dialog will open again, providing the same

options as for the full domain run.

Figure 4.12: Preparing to Run the Quarter Annular Project Subdomains

4.2 Coastal North Carolina

The Coastal North Carolina case studied is used to demonstrate how multiple subdomains

are managed within an SMT project. Starting with an existing project that already contains

multiple subdomains, a new subdomain for a region of interest is created, and the full and

multiple subdomain ADCIRC runs are completed.
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First, the user opens SMT and clicks the “Open Project” button. A file dialog is displayed and

the user navigates to the directory containing the North Carolina Coast project, as demonstrated

in Figure 4.13. This directory contains the SMT project file and all of the directories that contain

Figure 4.13: The Open ADCIRC Project Dialog

the subdomains in this project. Note that the project file extension is .spf, for subdomain project

file. The full domain ADCIRC files (fort.14, fort.15, etc.) are also in this directory, but are

hidden from view in this dialog.

Opening the North Carolina Coast.spf file opens the project in SMT. Upon opening the

project, the full domain is displayed and the project contents are listed in the Project Explorer,

as shown in Figure 4.14. This project currently contains seven subdomains, any of which can be

viewed by clicking on the subdomain name in the Project Explorer. For example, the Figure 4.15

shows the view of the Oregon Inlet subdomain.
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Figure 4.14: The North Carolina Coast Project Opened

Figure 4.15: Viewing the Oregon Inlet Subdomain
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In this project, the user has already defined specific color options in order to display the mesh

in a more usable manner. Choosing Display > Display Options... will open the display options

window shown in Figure 4.16. This options window allows the user to interactively choose how

Figure 4.16: The Display Options Window

to color the mesh, meaning that as options are changed, the mesh display is updated accordingly.

There are two tabs at the top of the window, allowing the user to choose color options for the fill

or the outline of elements. Currently, the user may choose either a solid color or a color gradient

that is based on the mesh elevation values. This user has chosen a color gradient. The gradient

is chosen by adding sliders, each of which has an elevation value and a color. Any number of

sliders can be used and elevation values can be changed by either moving the sliders themselves

up and down or by double-clicking the slider in the list on the right to edit the value.
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The user now wishes to create a new subdomain around Camp Lejeune, which is located in

Jacksonville, North Carolina, on the north coast of the New River Inlet as seen in Figure 4.17.

The user displays the full domain by clicking on ‘Full Domain’ in the Project Explorer and then

Figure 4.17: Map of Camp Lejeune

zooms into the area of interest, as shown in Figure 4.18.

The user is only interested in the results on the eastern coast of the New River Inlet, so

they select the subdomain using the polygon tool, only including the areas of interest, as shown

in Figure 4.19. Once satisfied with the size and coverage of the subdomain, the user clicks the

Create Subdomain button to create the new subdomain, which will be called “Camp Lejeune”.
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Figure 4.18: Camp Lejeune in the Full Domain

Figure 4.19: Selecting the Camp Lejeune Subdomain
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Once the subdomain is created, the Project Explorer will be updated and the new mesh will

be displayed, as shown in Figure 4.20.

Figure 4.20: The Camp Lejeune Subdomain

Now that the user has all of the needed subdomain for this project, they run the full domain.

Because the full domain is very large, this is done on a multi-node computing cluster. All of the

necessary files have already been created, so this is as simple as copying the files from the full

domain directory to the compute cluster and performing an ADCIRC run as normal. Once the

full domain run has completed, the subdomain output files need to be copied back into the local

full domain directory. Once this has been done, all of the subdomains are ready to be run, as

shown in Figure 4.21.

The user only wishes to run the Southport, Wilmington, and Camp Lejeune subdomains at

this time, so they select them from the list in the “ADCIRC” module and click the “Run Selected
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Subdomains” button.

Figure 4.21: Running Three of the North Carolina Coast Subdomains
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Chapter 5

Conclusions

Subdomain modeling as it exists requires extensive pre- and post-processing of ADCIRC mesh

data. This thesis presents an interactive graphical user interface, called SMT, that streamlines

the subdomain modeling process in a fast, portable, and reliable way. Several shape selection

tools are included in SMT that allow the user to select elements of an ADCIRC mesh by drawing

the shape on top of a plan view of the mesh. These tools use a newly developed search algorithm,

called the generalized range search algorithm, to provide sufficient performance for effective levels

of interactivity by performing the actual search in order to determine the elements selected by

the user. The algorithm, which operates on a quadtree data structure that contains an ADCIRC

mesh, works on the principal that if the container of a set of elements does not fall inside the

shape, none of the elements that it contains will fall inside the shape either. Likewise, if the

container falls entirely inside the shape, all of the elements that it contains will also fall inside

the shape. The derivations of the upper and lower bounds on performance of this algorithm

are presented, and test cases show that the actual performance falls in line with the expected

performance. Additionally, the algorithm performs best when selecting small sets of elements so

it is well suited for subdomain modeling. Finally, two case studies that show the ease and speed

with which a modeler can now use the subdomain modeling technique, are been presented.
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Future Work

Directions for future work with SMT are numerous. Work is underway on all features described

in this thesis that have not yet been implemented, such as mesh modification and visualization of

results. Methods of providing a map overlay feature that allows users to identify road networks,

geographic features, and points of interest are being explored. Additionally, because full domain

runs are often performed on high performance computing clusters, a feature that allows remote

connectivity is being developed. Future work on the generalized range search algorithm includes

research into the effects of tree balancing on performance, as well as methods for improving

performance for large solution sizes.
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Appendix A

Data Type Definitions
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adcData.h
1 #ifndef ADCDATA_H
2 #define ADCDATA_H
3

4

5 struct Node
6 {
7 unsigned int nodeNumber;
8 float x;
9 float y;

10 float z;
11 float normX;
12 float normY;
13 float normZ;
14 };
15

16

17 struct Element
18 {
19 unsigned int elementNumber;
20 Node* n1;
21 Node* n2;
22 Node* n3;
23 };
24

25

26 struct Point
27 {
28 float x;
29 float y;
30 Point() : x(0.0), y(0.0) {}
31 Point(float a, float b) : x(a), y(b) {}
32 };
33

34

35 #endif // ADCDATA_H
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QuadtreeData.h
1 #ifndef QUADTREEDATA_H
2 #define QUADTREEDATA_H
3

4 #include "adcData.h"
5 #include <vector>
6

7

8 struct leaf
9 {

10 float bounds[4];
11 std::vector<Node*> nodes;
12 std::vector<Element*> elements;
13

14 bool contains(Point p)
15 {
16 return (p.x >= bounds[0] &&
17 p.x <= bounds[1] &&
18 p.y >= bounds[2] &&
19 p.y <= bounds[3]);
20 }
21 };
22

23

24 typedef struct branch {
25 float bounds[4];
26 leaf *leaves[4];
27 struct branch *branches[4];
28

29 bool contains(Point p)
30 {
31 return (p.x >= bounds[0] &&
32 p.x <= bounds[1] &&
33 p.y >= bounds[2] &&
34 p.y <= bounds[3]);
35 }
36 } branch;
37

38

39 #endif // QUADTREEDATA_H
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Appendix B

QuadtreeSearch Class Code
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QuadtreeSearch.h
1 #ifndef QUADTREESEARCH_H
2 #define QUADTREESEARCH_H
3

4 #include "adcData.h"
5 #include "QuadtreeData.h"
6

7 class QuadtreeSearch
8 {
9 public:

10 QuadtreeSearch();
11

12 std::vector<Node*> FindNodes(branch *root);
13 std::vector<Element*> FindElements(branch *root);
14

15 protected:
16

17 Point shapeEdgePoint;
18

19 virtual bool PointIsInsideShape(Point p1) = 0;
20 virtual bool ShapeIntersects(branch *currBranch) = 0;
21 virtual bool ShapeIntersects(leaf *currLeaf) = 0;
22

23 std::vector<Node*> finalNodes;
24 std::vector<Node*> partialNodes;
25 std::vector<Element*> finalElements;
26 std::vector<Element*> partialElements;
27

28 int SearchNodes(branch *currBranch);
29 int SearchNodes(leaf *currLeaf);
30 int SearchElements(branch *currBranch);
31 int SearchElements(leaf *currLeaf);
32 void BruteForceNodes();
33 void BruteForceElements();
34 void AddAll(branch *currBranch, std::vector<Node*>* nodeList);
35 void AddAll(leaf *currLeaf, std::vector<Node*>* nodeList);
36 void AddAll(branch *currBranch, std::vector<Element*>* elementList);
37 void AddAll(leaf *currLeaf, std::vector<Element*>* elementList);
38 };
39

40 #endif
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QuadtreeSearch.cpp
1 #include "QuadtreeSearch.h"
2

3 QuadtreeSearch::QuadtreeSearch()
4 {
5 }
6

7

8 std::vector<Node*> QuadtreeSearch::FindNodes(branch *root)
9 {

10 finalNodes.clear();
11 partialNodes.clear();
12

13 SearchNodes(root);
14 BruteForceNodes();
15

16 return finalNodes;
17 }
18

19

20 std::vector<Element*> QuadtreeSearch::FindElements(branch *root)
21 {
22 finalElements.clear();
23 partialElements.clear();
24

25 SearchElements(root);
26 BruteForceElements();
27

28 return finalElements;
29 }
30

31

32 std::vector< std::vector<Node*>*> QuadtreeSearch::FindNodesLists(branch *root)
33 {
34 finalNodesLists.clear();
35 partialNodesLists.clear();
36

37 SearchNodesPtrs(root);
38 BruteForceNodesLists();
39

40 return finalNodesLists;
41 }
42

43

44 std::vector< std::vector<Element*>*> QuadtreeSearch::FindElementsLists(branch *root)
45 {
46 finalElementsLists.clear();
47 partialElementsLists.clear();
48

49 SearchElementsPtrs(root);
50 BruteForceElementsLists();
51

52 return finalElementsLists;
53 }
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54

55

56 int QuadtreeSearch::SearchNodes(branch *currBranch)
57 {
58 if (ShapeIntersects(currBranch))
59 {
60 for (int i=0; i<4; ++i)
61 {
62 if (currBranch->branches[i])
63 {
64 if (SearchNodes(currBranch->branches[i]))
65 return 1;
66 }
67 }
68 for (int i=0; i<4; ++i)
69 {
70 if (currBranch->leaves[i])
71 {
72 if (SearchNodes(currBranch->leaves[i]))
73 return 1;
74 }
75 }
76 }
77 else if (currBranch->contains(shapeEdgePoint))
78 {
79 for (int i=0; i<4; ++i)
80 {
81 if (currBranch->branches[i])
82 {
83 if (SearchNodes(currBranch->branches[i]))
84 return 1;
85 }
86 }
87 for (int i=0; i<4; ++i)
88 {
89 if (currBranch->leaves[i])
90 {
91 if (SearchNodes(currBranch->leaves[i]))
92 return 1;
93 }
94 }
95 return 1;
96 }
97 else
98 {
99 if (PointIsInsideShape(Point(currBranch->bounds[1], currBranch->bounds[3])))

100 {
101 AddAll(currBranch, &finalNodes);
102 }
103 }
104 return 0;
105 }
106

107
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108 int QuadtreeSearch::SearchNodes(leaf *currLeaf)
109 {
110 if (ShapeIntersects(currLeaf))
111 {
112 AddAll(currLeaf, &partialNodes);
113 }
114 else if (currLeaf->contains(shapeEdgePoint))
115 {
116 AddAll(currLeaf, &partialNodes);
117 return 1;
118 }
119 else if (PointIsInsideShape(Point(currLeaf->bounds[1], currLeaf->bounds[3])))
120 {
121 AddAll(currLeaf, &finalNodes);
122 }
123 return 0;
124 }
125

126

127 int QuadtreeSearch::SearchElements(branch *currBranch)
128 {
129 if (ShapeIntersects(currBranch))
130 {
131 for (int i=0; i<4; ++i)
132 {
133 if (currBranch->branches[i])
134 {
135 if (SearchElements(currBranch->branches[i]))
136 return 1;
137 }
138 }
139 for (int i=0; i<4; ++i)
140 {
141 if (currBranch->leaves[i])
142 {
143 if (SearchElements(currBranch->leaves[i]))
144 return 1;
145 }
146 }
147 }
148 else if (currBranch->contains(shapeEdgePoint))
149 {
150 for (int i=0; i<4; ++i)
151 {
152 if (currBranch->branches[i])
153 {
154 if (SearchElements(currBranch->branches[i]))
155 return 1;
156 }
157 }
158 for (int i=0; i<4; ++i)
159 {
160 if (currBranch->leaves[i])
161 {
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162 if (SearchElements(currBranch->leaves[i]))
163 return 1;
164 }
165 }
166 return 1;
167 }
168 else if (PointIsInsideShape(Point(currBranch->bounds[1], currBranch->bounds[3])))
169 {
170 AddAll(currBranch, &finalElements);
171 }
172 return 0;
173 }
174

175

176 int QuadtreeSearch::SearchElements(leaf *currLeaf)
177 {
178 if (ShapeIntersects(currLeaf))
179 {
180 AddAll(currLeaf, &partialElements);
181 }
182 else if (currLeaf->contains(shapeEdgePoint))
183 {
184 AddAll(currLeaf, &partialElements);
185 return 1;
186 }
187 else if (PointIsInsideShape(Point(currLeaf->bounds[1], currLeaf->bounds[3])))
188 {
189 AddAll(currLeaf, &finalElements);
190 }
191 return 0;
192 }
193

194

195 void QuadtreeSearch::BruteForceNodes()
196 {
197 for (std::vector<Node*>::iterator currNode = partialNodes.begin();
198 currNode != partialNodes.end();
199 ++currNode)
200 {
201 if (PointIsInsideShape(Point((*currNode)->normX, (*currNode)->normY)))
202 {
203 finalNodes.push_back(*currNode);
204 }
205 }
206 }
207

208

209 void QuadtreeSearch::BruteForceElements()
210 {
211 for (std::vector<Element*>::iterator currElement = partialElements.begin();
212 currElement != partialElements.end();
213 ++currElement)
214 {
215 if (PointIsInsideShape(Point((*currElement)->n1->normX,
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216 (*currElement)->n1->normY)) ||
217 PointIsInsideShape(Point((*currElement)->n2->normX,
218 (*currElement)->n2->normY)) ||
219 PointIsInsideShape(Point((*currElement)->n3->normX,
220 (*currElement)->n3->normY)))
221 {
222 finalElements.push_back(*currElement);
223 }
224 }
225 }
226

227

228 void QuadtreeSearch::AddAll(branch *currBranch, std::vector<Node*>* nodeList)
229 {
230 for (int i=0; i<4; ++i)
231 {
232 if (currBranch->branches[i])
233 {
234 AddAll(currBranch->branches[i], nodeList);
235 }
236 if (currBranch->leaves[i])
237 {
238 AddAll(currBranch->leaves[i], nodeList);
239 }
240 }
241 }
242

243

244 void QuadtreeSearch::AddAll(leaf *currLeaf, std::vector<Node*>* nodeList)
245 {
246 if (currLeaf->nodes.size() > 0)
247 {
248 nodeList->insert(nodeList->end(),
249 currLeaf->nodes.begin(),
250 currLeaf->nodes.end());
251 }
252 }
253

254

255 void QuadtreeSearch::AddAll(branch *currBranch, std::vector<Element*>* elementList)
256 {
257 for (int i=0; i<4; ++i)
258 {
259 if (currBranch->branches[i])
260 {
261 AddAll(currBranch->branches[i], elementList);
262 }
263 if (currBranch->leaves[i])
264 {
265 AddAll(currBranch->leaves[i], elementList);
266 }
267 }
268 }
269
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270

271 void QuadtreeSearch::AddAll(leaf *currLeaf, std::vector<Element*>* elementList)
272 {
273 if (currLeaf->elements.size() > 0)
274 elementList->insert(elementList->end(),
275 currLeaf->elements.begin(),
276 currLeaf->elements.end());
277 }
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Appendix C

CircleSearch Class Code
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CircleSearch.h
1 #ifndef CIRCLESEARCH_H
2 #define CIRCLESEARCH_H
3

4 #include "QuadtreeSearch.h"
5

6 class CircleSearch : public QuadtreeSearch
7 {
8 public:
9 CircleSearch();

10

11 void SetCircleParameters(float x, float y, float radius);
12

13 protected:
14

15 virtual bool PointIsInsideShape(Point p1);
16 virtual bool ShapeIntersects(branch *b);
17 virtual bool ShapeIntersects(leaf *l);
18

19 private:
20

21 float x, y, r;
22

23 bool EdgeIntersectsCircle(Point p1, Point p2);
24 float DistanceSquared(float x1, float y1, float x2, float y2);
25 };
26

27 #endif // CIRCLESEARCH_H
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CircleSearch.cpp
1 #include "CircleSearch.h"
2

3 CircleSearch::CircleSearch()
4 {
5 }
6

7

8 void CircleSearch::SetCircleParameters(float x, float y, float radius)
9 {

10 this->x = x;
11 this->y = y;
12 this->r = radius;
13 shapeEdgePoint.x = x+radius;
14 shapeEdgePoint.y = y;
15 }
16

17

18 bool CircleSearch::PointIsInsideShape(Point p1)
19 {
20 return DistanceSquared(x, y, p1.x, p1.y) < r*r;
21 }
22

23

24 bool CircleSearch::ShapeIntersects(branch *b)
25 {
26 Point BottomLeft(b->bounds[0], b->bounds[2]);
27 Point BottomRight(b->bounds[1], b->bounds[2]);
28 Point TopLeft(b->bounds[0], b->bounds[3]);
29 Point TopRight(b->bounds[1], b->bounds[3]);
30

31 return EdgeIntersectsCircle(BottomLeft, BottomRight) ||
32 EdgeIntersectsCircle(BottomRight, TopRight) ||
33 EdgeIntersectsCircle(TopRight, TopLeft) ||
34 EdgeIntersectsCircle(TopLeft, BottomLeft);
35 }
36

37

38 bool CircleSearch::ShapeIntersects(leaf *l)
39 {
40 Point BottomLeft(l->bounds[0], l->bounds[2]);
41 Point BottomRight(l->bounds[1], l->bounds[2]);
42 Point TopLeft(l->bounds[0], l->bounds[3]);
43 Point TopRight(l->bounds[1], l->bounds[3]);
44

45 return EdgeIntersectsCircle(BottomLeft, BottomRight) ||
46 EdgeIntersectsCircle(BottomRight, TopRight) ||
47 EdgeIntersectsCircle(TopRight, TopLeft) ||
48 EdgeIntersectsCircle(TopLeft, BottomLeft);
49 }
50

51

52 bool CircleSearch::EdgeIntersectsCircle(Point p1, Point p2)
53 {
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54 float dist1 = DistanceSquared(x, y, p1.x, p1.y);
55 float dist2 = DistanceSquared(x, y, p2.x, p2.y);
56 bool p1Inside = dist1 <= r*r;
57 bool p2Inside = dist2 <= r*r;
58 if (p1Inside && p2Inside)
59 {
60 return false;
61 }
62 else if (p1Inside != p2Inside)
63 {
64 return true;
65 }
66

67 float xDiff = p2.x - p1.x;
68 float yDiff = p2.y - p1.y;
69 float d2 = xDiff*xDiff + yDiff*yDiff;
70 float u = (xDiff * (x - p1.x) + yDiff * (y - p1.y)) / d2;
71 if (u >= 0.0 && u <= 1.0)
72 {
73 float closestX = p1.x + u*xDiff;
74 float closestY = p1.y + u*yDiff;
75 return DistanceSquared(x, y, closestX, closestY) <= r*r;
76 } else {
77 return (DistanceSquared(x, y, p1.x, p1.y) <= r*r ||
78 DistanceSquared(x, y, p2.x, p2.y) <= r*r);
79 }
80 }
81

82

83 float CircleSearch::DistanceSquared(float x1, float y1, float x2, float y2)
84 {
85 return (x1 - x2)*(x1 - x2) + (y1 - y2)*(y1 - y2);
86 }

102



Appendix D

RectangleSearch Class Code
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RectangleSearch.h
1 #ifndef RECTANGLESEARCH_H
2 #define RECTANGLESEARCH_H
3

4 #include "QuadtreeSearch.h"
5 class RectangleSearch : public QuadtreeSearch
6 {
7 public:
8 RectangleSearch();
9

10 void SetRectangleParameters(float l, float r, float b, float t);
11

12 protected:
13

14 virtual bool PointIsInsideShape(Point p1);
15 virtual bool ShapeIntersects(branch *currBranch);
16 virtual bool ShapeIntersects(leaf *currLeaf);
17

18 private:
19

20 float l, r, b, t;
21

22

23 };
24

25 #endif // RECTANGLESEARCH_H
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RectangleSearch.cpp
1 #include "RectangleSearch.h"
2

3 RectangleSearch::RectangleSearch()
4 {
5 }
6

7

8 void RectangleSearch::SetRectangleParameters(float l, float r, float b, float t)
9 {

10 this->l = l;
11 this->r = r;
12 this->b = b;
13 this->t = t;
14 shapeEdgePoint.x = l;
15 shapeEdgePoint.y = b;
16 }
17

18

19 bool RectangleSearch::PointIsInsideShape(Point p1)
20 {
21 return (p1.x <= r &&
22 p1.x >= l &&
23 p1.y <= t &&
24 p1.y >= b);
25 }
26

27 bool RectangleSearch::ShapeIntersects(branch *currBranch)
28 {
29 if (!(l >= currBranch->bounds[1] ||
30 r <= currBranch->bounds[0] ||
31 b >= currBranch->bounds[3] ||
32 t <= currBranch->bounds[2]))
33 {
34 Point BottomLeft(currBranch->bounds[0], currBranch->bounds[2]);
35 Point BottomRight(currBranch->bounds[1], currBranch->bounds[2]);
36 Point TopLeft(currBranch->bounds[0], currBranch->bounds[3]);
37 Point TopRight(currBranch->bounds[1], currBranch->bounds[3]);
38 if (PointIsInsideShape(BottomLeft) &&
39 PointIsInsideShape(BottomRight) &&
40 PointIsInsideShape(TopLeft) &&
41 PointIsInsideShape(TopRight))
42 return false;
43 if (currBranch->contains(Point(b, l)) &&
44 currBranch->contains(Point(b, r)) &&
45 currBranch->contains(Point(t, l)) &&
46 currBranch->contains(Point(t, r)))
47 return false;
48 return true;
49 }
50 return false;
51 }
52

53 bool RectangleSearch::ShapeIntersects(leaf *currLeaf)
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54 {
55 if (!(l >= currLeaf->bounds[1] ||
56 r <= currLeaf->bounds[0] ||
57 b >= currLeaf->bounds[3] ||
58 t <= currLeaf->bounds[2]))
59 {
60 Point BottomLeft(currLeaf->bounds[0], currLeaf->bounds[2]);
61 Point BottomRight(currLeaf->bounds[1], currLeaf->bounds[2]);
62 Point TopLeft(currLeaf->bounds[0], currLeaf->bounds[3]);
63 Point TopRight(currLeaf->bounds[1], currLeaf->bounds[3]);
64 if (PointIsInsideShape(BottomLeft) &&
65 PointIsInsideShape(BottomRight) &&
66 PointIsInsideShape(TopLeft) &&
67 PointIsInsideShape(TopRight))
68 return false;
69 if (currLeaf->contains(Point(b, l)) &&
70 currLeaf->contains(Point(b, r)) &&
71 currLeaf->contains(Point(t, l)) &&
72 currLeaf->contains(Point(t, r)))
73 return false;
74 return true;
75 }
76 return false;
77 }
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PolygonSearch Class Code
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PolygonSearch.h
1 #ifndef POLYGONSEARCH_H
2 #define POLYGONSEARCH_H
3

4 #include "QuadtreeSearch.h"
5

6 class PolygonSearch : public QuadtreeSearch
7 {
8 public:
9 PolygonSearch();

10

11 void SetPolygonParameters(std::vector<Point> polyLine);
12

13 protected:
14

15 virtual bool PointIsInsideShape(Point p1);
16 virtual bool ShapeIntersects(branch *currBranch);
17 virtual bool ShapeIntersects(leaf *currLeaf);
18

19 private:
20

21 std::vector<Point> polygonPoints;
22

23 bool EdgesIntersect(Point pointA, Point pointB, Point pointC, Point pointD);
24 bool IsCCW(Point A, Point B, Point C);
25 };
26

27 #endif // POLYGONSEARCH_H
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PolygonSearch.cpp
1 #include "PolygonSearch.h"
2

3 PolygonSearch::PolygonSearch()
4 {
5 }
6

7 void PolygonSearch::SetPolygonParameters(std::vector<Point> polyLine)
8 {
9 polygonPoints = polyLine;

10 shapeEdgePoint = polyLine[0];
11 }
12

13

14 bool PolygonSearch::PointIsInsideShape(Point p1)
15 {
16 bool pointIsInside = false;
17 unsigned int i, j = 0;
18 for (i=0, j=polygonPoints.size()-1; i<polygonPoints.size(); j = i++)
19 {
20 if (((polygonPoints[i].y > p1.y) != (polygonPoints[j].y > p1.y)) &&
21 (p1.x < (polygonPoints[j].x-polygonPoints[i].x) *
22 (p1.y-polygonPoints[i].y) / (polygonPoints[j].y-polygonPoints[i].y) +
23 polygonPoints[i].x))
24 pointIsInside = !pointIsInside;
25 }
26

27 return pointIsInside;
28 }
29

30

31 bool PolygonSearch::ShapeIntersects(branch *currBranch)
32 {
33 Point point1(currBranch->bounds[0], currBranch->bounds[2]); /* Bottom Left */
34 Point point2(currBranch->bounds[1], currBranch->bounds[2]); /* Bottom Right */
35 Point point3(currBranch->bounds[0], currBranch->bounds[3]); /* Top Left */
36 Point point4(currBranch->bounds[1], currBranch->bounds[3]); /* Top Right */
37 unsigned int pointCount = polygonPoints.size();
38

39 for (unsigned int i=0; i<pointCount-1; ++i)
40 if (EdgesIntersect(point1, point2, polygonPoints[i], polygonPoints[i+1]) ||
41 EdgesIntersect(point1, point3, polygonPoints[i], polygonPoints[i+1]) ||
42 EdgesIntersect(point3, point4, polygonPoints[i], polygonPoints[i+1]) ||
43 EdgesIntersect(point2, point4, polygonPoints[i], polygonPoints[i+1]))
44 return true;
45 if (EdgesIntersect(point1, point2, polygonPoints[0], polygonPoints[pointCount-1]) ||
46 EdgesIntersect(point1, point3, polygonPoints[0], polygonPoints[pointCount-1]) ||
47 EdgesIntersect(point3, point4, polygonPoints[0], polygonPoints[pointCount-1]) ||
48 EdgesIntersect(point2, point4, polygonPoints[0], polygonPoints[pointCount-1]))
49 return true;
50 return false;
51 }
52

53
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54 bool PolygonSearch::ShapeIntersects(leaf *currLeaf)
55 {
56 Point point1(currLeaf->bounds[0], currLeaf->bounds[2]); /* Bottom Left */
57 Point point2(currLeaf->bounds[1], currLeaf->bounds[2]); /* Bottom Right */
58 Point point3(currLeaf->bounds[0], currLeaf->bounds[3]); /* Top Left */
59 Point point4(currLeaf->bounds[1], currLeaf->bounds[3]); /* Top Right */
60 unsigned int pointCount = polygonPoints.size();
61

62 for (unsigned int i=0; i<pointCount-1; ++i)
63 if (EdgesIntersect(point1, point2, polygonPoints[i], polygonPoints[i+1]) ||
64 EdgesIntersect(point1, point3, polygonPoints[i], polygonPoints[i+1]) ||
65 EdgesIntersect(point3, point4, polygonPoints[i], polygonPoints[i+1]) ||
66 EdgesIntersect(point2, point4, polygonPoints[i], polygonPoints[i+1]))
67 return true;
68 if (EdgesIntersect(point1, point2, polygonPoints[0], polygonPoints[pointCount-1]) ||
69 EdgesIntersect(point1, point3, polygonPoints[0], polygonPoints[pointCount-1]) ||
70 EdgesIntersect(point3, point4, polygonPoints[0], polygonPoints[pointCount-1]) ||
71 EdgesIntersect(point2, point4, polygonPoints[0], polygonPoints[pointCount-1]))
72 return true;
73 return false;
74 }
75

76

77 bool PolygonSearch::EdgesIntersect(Point pointA, Point pointB, Point pointC, Point pointD)
78 {
79 if (IsCCW(pointA, pointC, pointD) == IsCCW(pointB, pointC, pointD))
80 {
81 return false;
82 }
83 else if (IsCCW(pointA, pointB, pointC) == IsCCW(pointA, pointB, pointD))
84 {
85 return false;
86 } else {
87 return true;
88 }
89 }
90

91

92 bool PolygonSearch::IsCCW(Point A, Point B, Point C)
93 {
94 if ((C.y-A.y) * (B.x-A.x) > (B.y-A.y) * (C.x-A.x))
95 return true;
96 return false;
97 }

110



Appendix F

PointSearch Class Code
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PointSearch.h
1 #ifndef POINTSEARCH_H
2 #define POINTSEARCH_H
3

4 #include "QuadtreeSearch.h"
5

6 class PointSearch : public QuadtreeSearch
7 {
8 public:
9 PointSearch();

10

11 void SetPointParameters(float x, float y);
12 std::vector<Node*> FindNodes(branch *root);
13 std::vector<Element*> FindElements(branch *root);
14

15 protected:
16

17 virtual bool PointIsInsideShape(Point p1);
18 virtual bool ShapeIntersects(branch *currBranch);
19 virtual bool ShapeIntersects(leaf *currLeaf);
20

21 private:
22

23 float x, y;
24

25 void CustomBruteForceNodes();
26 void CustomBruteForceElements();
27 float DistanceSquared(float nodeX, float nodeY);
28 bool PointIsInsideElement(Element *currElement);
29 };
30

31 #endif // POINTSEARCH_H
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PointSearch.cpp
1 #include "PointSearch.h"
2

3 PointSearch::PointSearch()
4 {
5 }
6

7

8 std::vector<Node*> PointSearch::FindNodes(branch *root)
9 {

10 finalNodes.clear();
11 partialNodes.clear();
12

13 SearchNodes(root);
14 CustomBruteForceNodes();
15

16 return finalNodes;
17 }
18

19

20 std::vector<Element*> PointSearch::FindElements(branch *root)
21 {
22 finalElements.clear();
23 partialElements.clear();
24

25 SearchElements(root);
26 CustomBruteForceElements();
27

28 return finalElements;
29 }
30

31

32 void PointSearch::SetPointParameters(float x, float y)
33 {
34 this->x = x;
35 this->y = y;
36 shapeEdgePoint.x = x;
37 shapeEdgePoint.y = y;
38 }
39

40

41 bool PointSearch::PointIsInsideShape(Point p1)
42 {
43 return false;
44 }
45

46

47 bool PointSearch::ShapeIntersects(branch *currBranch)
48 {
49 return (x >= currBranch->bounds[0] &&
50 x <= currBranch->bounds[1] &&
51 y >= currBranch->bounds[2] &&
52 y <= currBranch->bounds[3]);
53 }
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54

55

56 bool PointSearch::ShapeIntersects(leaf *currLeaf)
57 {
58 return (x >= currLeaf->bounds[0] &&
59 x <= currLeaf->bounds[1] &&
60 y >= currLeaf->bounds[2] &&
61 y <= currLeaf->bounds[3]);
62 }
63

64

65 void PointSearch::CustomBruteForceNodes()
66 {
67 if (partialNodes.size())
68 {
69 Node *currClosest = partialNodes[0];
70 float currDistance = DistanceSquared(currClosest->normX, currClosest->normY);
71 for (std::vector<Node*>::iterator currNode = partialNodes.begin() + 1;
72 currNode != partialNodes.end();
73 ++currNode)
74 {
75 float newDistance = DistanceSquared((*currNode)->normX, (*currNode)->normY);
76 if (newDistance < currDistance)
77 {
78 currClosest = *currNode;
79 currDistance = newDistance;
80 }
81 }
82 finalNodes.push_back(currClosest);
83 }
84 }
85

86

87

88 void PointSearch::CustomBruteForceElements()
89 {
90 if (partialElements.size())
91 {
92 for (std::vector<Element*>::iterator currElement = partialElements.begin();
93 currElement != partialElements.end();
94 ++currElement)
95 {
96 if (PointIsInsideElement(*currElement))
97 {
98 finalElements.push_back(*currElement);
99 return;

100 }
101 }
102 }
103 }
104

105

106 float PointSearch::DistanceSquared(float nodeX, float nodeY)
107 {
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108 return ((nodeX-x)*(nodeX-x) + (nodeY-y)*(nodeY-y));
109 }
110

111

112 bool PointSearch::PointIsInsideElement(Element *currElement)
113 {
114 Node *n1 = currElement->n1;
115 Node *n2 = currElement->n2;
116 Node *n3 = currElement->n3;
117 float a = (n2->normX - n1->normX)*(y - n1->normY) - (x - n1->normX)*(n2->normY - n1->normY);
118 float b = (n3->normX - n2->normX)*(y - n2->normY) - (x - n2->normX)*(n3->normY - n2->normY);
119 float c = (n1->normX - n3->normX)*(y - n3->normY) - (x - n3->normX)*(n1->normY - n3->normY);
120

121

122 if ((a > 0 && b > 0 && c > 0) || (a < 0 && b < 0 && c < 0))
123 return true;
124 return false;
125 }
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ConvexCircleSearch Class Code
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ConvexCircleSearch.h
1 #ifndef CONVEXCIRCLESEARCH_H
2 #define CONVEXCIRCLESEARCH_H
3

4 #include "CircleSearchNew.h"
5

6 class ConvexCircleSearch : public CircleSearch
7 {
8 public:
9 ConvexCircleSearch();

10

11 protected:
12

13 int SearchElements(branch *currBranch);
14 int SearchElements(leaf *currLeaf);
15 };
16

17 #endif // CONVEXCIRCLESEARCH_H
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ConvexCircleSearch.cpp
1 #include "ConvexCircleSearch.h"
2

3 ConvexCircleSearch::ConvexCircleSearch()
4 {
5 }
6

7

8 int ConvexCircleSearch::SearchElements(branch *currBranch)
9 {

10 int cornerInShapeCount = 0;
11 if (PointIsInsideShape(Point(currBranch->bounds[0], currBranch->bounds[3])))
12 ++cornerInShapeCount;
13 if (PointIsInsideShape(Point(currBranch->bounds[0], currBranch->bounds[2])))
14 ++cornerInShapeCount;
15 if (PointIsInsideShape(Point(currBranch->bounds[1], currBranch->bounds[3])))
16 ++cornerInShapeCount;
17 if (PointIsInsideShape(Point(currBranch->bounds[1], currBranch->bounds[2])))
18 ++cornerInShapeCount;
19

20 if (cornerInShapeCount == 4)
21 {
22 AddAll(currBranch, &finalNodes);
23 }
24 else if (cornerInShapeCount != 0)
25 {
26 for (int i=0; i<4; ++i)
27 {
28 if (currBranch->branches[i])
29 {
30 if (SearchElements(currBranch->branches[i]))
31 return 1;
32 }
33 }
34 for (int i=0; i<4; ++i)
35 {
36 if (currBranch->leaves[i])
37 {
38 if (SearchElements(currBranch->leaves[i]))
39 return 1;
40 }
41 }
42 }
43 else if (currBranch->contains(shapeEdgePoint))
44 {
45 for (int i=0; i<4; ++i)
46 {
47 if (currBranch->branches[i])
48 {
49 if (SearchElements(currBranch->branches[i]))
50 return 1;
51 }
52 }
53 for (int i=0; i<4; ++i)
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54 {
55 if (currBranch->leaves[i])
56 {
57 if (SearchElements(currBranch->leaves[i]))
58 return 1;
59 }
60 }
61 return 1;
62 }
63 else if (ShapeIntersects(currBranch))
64 {
65 for (int i=0; i<4; ++i)
66 {
67 if (currBranch->branches[i])
68 {
69 if (SearchElements(currBranch->branches[i]))
70 return 1;
71 }
72 }
73 for (int i=0; i<4; ++i)
74 {
75 if (currBranch->leaves[i])
76 {
77 if (SearchElements(currBranch->leaves[i]))
78 return 1;
79 }
80 }
81 }
82 return 0;
83 }
84

85 int ConvexCircleSearch::SearchElements(leaf *currLeaf)
86 {
87 int cornerInShapeCount = 0;
88 if (PointIsInsideShape(Point(currLeaf->bounds[0], currLeaf->bounds[3])))
89 ++cornerInShapeCount;
90 if (PointIsInsideShape(Point(currLeaf->bounds[0], currLeaf->bounds[2])))
91 ++cornerInShapeCount;
92 if (PointIsInsideShape(Point(currLeaf->bounds[1], currLeaf->bounds[3])))
93 ++cornerInShapeCount;
94 if (PointIsInsideShape(Point(currLeaf->bounds[1], currLeaf->bounds[2])))
95 ++cornerInShapeCount;
96

97 if (cornerInShapeCount == 4)
98 {
99 AddAll(currLeaf, &finalNodes);

100 }
101 else if (cornerInShapeCount != 0)
102 {
103 AddAll(currLeaf, &partialNodes);
104 }
105 else if (currLeaf->contains(shapeEdgePoint))
106 {
107 AddAll(currLeaf, &partialNodes);
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108 return 1;
109 }
110 else if (ShapeIntersects(currLeaf))
111 {
112 AddAll(currLeaf, &partialNodes);
113 }
114 return 0;
115 }

120


