
Sterling: A Web-Based Visualizer
for Relational Modeling Languages

Tristan Dyer1(B) and John Baugh2

1 Brown University, Providence, RI, USA
tristan dyer@brown.edu

2 North Carolina State University, Raleigh, NC, USA

Abstract. We introduce Sterling, a web-based visualization tool that
provides interactive views of relational models and allows users to cre-
ate custom visualizations using modern JavaScript libraries like D3 and
Cytoscape. We outline its design goals and architecture, and describe
custom visualizations developed with Sterling that enable verification
studies of scientific software used in production. While development is
driven primarily by the Alloy community, other relational modeling lan-
guages are accommodated by Sterling’s data agnostic architecture.

Keywords: Alloy · Sterling · Formal methods · Visualization

1 Introduction

Model finding tools like Alloy enable a lightweight approach to design and rea-
soning about complex software systems. Such tools provide push-button analysis
for both checking assertions within bounded scopes, and for generating instances
that satisfy a property of interest. An attractive feature of Alloy is the immedi-
ate feedback provided by visualizations, allowing users to inspect instances and
counterexamples in order to identify design problems. The ability to communi-
cate visual information intuitively therefore plays a key role in determining the
effectiveness of interactions with the user [5].

The built-in visualizer in the Alloy Analyzer can display an instance as a
directed graph in which nodes represent atoms and edges represent tuples of
relations. To help users better understand an instance, basic properties of the
graph such as color and shape can be customized, and graph nodes can be
repositioned manually to achieve a clearer layout. Additionally, the graph view
supports “projection,” a feature most commonly used with models of dynamic
systems, in which an instance is displayed from the perspective of an atom or
set of atoms. When an instance of such a model is projected over time, the user
is able to step through snapshots of individual states in sequence.

Despite these capabilities, some instances can be difficult to interpret as mod-
els grow in size and complexity. Some well-known issues, for instance, include the
inability to drag nodes out of the rows into which they are initially laid out [3,8].

c⃝ Springer Nature Switzerland AG 2021
A. Raschke and D. Méry (Eds.): ABZ 2021, LNCS 12709, pp. 99–104, 2021.
https://doi.org/10.1007/978-3-030-77543-8_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77543-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-77543-8_7


100 T. Dyer and J. Baugh

In addition, the graph layout is recalculated any time a new instance is generated
or the projection is changed, so the user is forced to reinterpret the entire graph
if, for example, they are stepping through the state atoms in sequence [3,9,12].
Various approaches have been proposed to address these and other issues, either
by extending the existing visualizer [12] or by introducing new tools [3,5,8]. Our
own experiences with Alloy in the field of scientific computing have highlighted
the need for better visualization approaches in general, and for an interface that
can also depict spatial relationships—not just topological ones—while maintain-
ing consistency in those relationships when dynamic updates occur, as they do
in problems with time-varying state.

For instance, in one such study, Baugh and Altuntas [2] use Alloy to explore
implementation choices and ensure soundness of an extension made to a large-
scale storm surge application used in production. To be physically meaningful,
models representing finite element meshes—which can be thought of as a trian-
gulation of a surface—are constrained to include only those that have a planar
embedding, and therefore do not contain overlapping triangles. Working with
relational depictions alone means “untangling” each instance as it occurs, lead-
ing to the study’s conclusion that “more than any extension to Alloy, what would
have benefited our study most is a tool capable of automatically producing pla-
nar embeddings of meshes from Alloy instances, which proved to be tedious to
do by hand.”

A subsequent study [4] with Alloy focused on bounded verification of sparse
matrix formats, which use array indirection and other structure to avoid stor-
ing zeroes. Dense matrices are modeled as relations mapping indices to values,
producing dozens of tuples that clutter and overrun any visualization attempt
with edges. The sparse matrices themselves, and the dynamic state changes that
accompany them for operations like matrix multiplication, make visualizations
nearly impossible to interpret.

2 Sterling Design and Architecture

Motivated by these studies, and drawing on feedback and suggestions from the
2018 Workshop on the Future of Alloy, we have developed an approach that
builds on the strengths of existing visualizations. Sterling’s design is based on
the following principles: the visualizer should (1) implement and extend the capa-
bilities already present in Alloy, (2) employ a modern architecture built using
popular languages and well established libraries, and (3) provide functionality
for creating domain specific visualizations.

Consistent with these principles, Sterling is a web application,1 built upon a
popular web technology stack using the React and Redux libraries, and packaged
with a custom build of Alloy. A client-server relationship is established between
Sterling and Alloy by an embedded web server, enabling instances to be imme-
diately visualized in Sterling as they are generated by Alloy. The user interface
is similar to Alloy’s own, providing graph and table views which extend the
1 A Sterling demo with examples can be found at https://sterling-js.github.io.

https://sterling-js.github.io


Sterling: A Web-Based Visualizer for Relational Modeling Languages 101

functionality of their counterparts in Alloy, while adding a “script” view that
provides users with the ability to create custom visualizations from instance
data by writing JavaScript code. Communication between Alloy and the indi-
vidual views is managed using a mediated model-view architecture, illustrated
in Fig. 1. Consequently, other relational logic and model finding tools may also
employ Sterling for visualization, so long as data is provided to Sterling in the
Alloy XML format.

Script View Graph View

Mediator
Instance
JSON

Instance
JSON

npm JS Libraries

Alloy

Instance XML

Instance
Requests

React Redux

Fig. 1. The sterling architecture.

The Sterling graph view offers the same functionality as the Alloy graph view,
but also provides a few key extensions. Most notably, graph elements are not
restricted to rows, and users may freely arrange graphical elements to make the
display more readable. Furthermore, the layout algorithm is not automatically
executed when the projection is changed or a new instance is generated, and
so graphical elements remain static as users step through stateful models and
generate instances.

The Sterling script view provides an environment for the rapid development
of custom visualizations by bringing together a text editor, a blank canvas, and
a JavaScript execution environment, giving users a basic “code sandbox” in
which they can create visualizations based on instance data using their favorite
JS libraries. Within the script view environment, all instance data—the signa-
tures, fields, atoms, and tuples—are exposed as JS variables. Additionally, users
have direct access to the npm package repository, which can be used to add
visualization (or any other useful) libraries to the scripting environment. This
combination enables, for example, a user to bind atoms to shapes using the
D3 visualization library, and to calculate their positions based on relationships
defined by tuples. We have found this paradigm to be particularly useful for
visualizing instances of models with inherent spatial properties. For example, a
planar embedding of a finite element mesh, as previously described, is shown in
Fig. 2. More custom visualizations, including ones for sparse matrices and some
common puzzles, can be found in the interactive demo on the Sterling website.



102 T. Dyer and J. Baugh

Fig. 2. Finite element mesh as a planar embedding in the script view.

3 Creating Scripts and Models

The script view is designed to integrate with the iterative design process that
is typical of Alloy, and as such, users receive the same kind of immediate visual
feedback provided by the graph view, with the added benefit of complete control
over the visual approach used to display instances. In typical usage of the script
view, a user begins by writing a model and executing a command to generate
an instance. The instance is automatically sent to Sterling, where the user then
writes a script in the script view. To execute the script and generate the visu-
alization, the user presses “Ctrl+Enter” or clicks the “Execute” button located
at the top of the script editor. The user can continue to refine the visualization
by editing and rerunning the script, or use the “Next” button to explore more
instances. Each time an instance is generated, Sterling automatically executes
the script to re-render the visualization. This automatic execution continues
when the user returns to Alloy, refines the model, and generates new instances.
If the model is changed in a way that causes the visualization script to throw an
error, the user is notified, and they must then update the visualization script to
reflect the new model.

In practice we have found visualization scripts typically start out simple
and grow in complexity alongside the model. For example, early iterations of the
previously described matrix models employed the Cytoscape JS library to create
interactive “snapshot” views of instances, as shown in Fig. 3a. These snapshots,
described by Jackson [6], proved useful in the development and understanding
of both the hierarchical and relational structure of the models. As the structure
of the models became more concrete and focus shifted to modeling the behavior
of sparse matrix operations, the visualization script evolved to provide a more
realistic view of matrices as well as a clear depiction of state change, as shown
in Fig. 3b.



Sterling: A Web-Based Visualizer for Relational Modeling Languages 103

(a) A snapshot view of a dense matrix

(b) A sparse matrix update operation

Fig. 3. Scripts for matrix models at (a) early and (b) late stages of development.

For users who are comfortable using JavaScript, particularly those with
experience using popular JS visualization libraries, creating custom visualiza-
tions from Alloy instances is straightforward. To support users with little or
no experience, the Sterling website provides tutorials and numerous examples
that demonstrate basic visualization techniques. Furthermore, scripts capable of
generating custom visualizations for some common modeling paradigms, such as
binary trees and directed graphs, are available on the website and can be used
out-of-the-box.

4 Conclusion

Sterling addresses some of the common issues identified with existing visualiza-
tions in Alloy, and introduces a script view to enable development of custom
visualizations without sacrificing the immediate visual feedback provided by the
Alloy Analyzer. The Sterling architecture and visualization approach take inspi-
ration from other tools developed to address certain visualization challenges in
Alloy and other formalisms. Alloy4Fun [8] and BMotionWeb [7] are both web-
based tools that leverage the popularity of the JavaScript programming language



104 T. Dyer and J. Baugh

and the availability of robust data visualization libraries, and PVSio-Web [10]
employs a client-server architecture to enable coupling of a formal verification
tool with a web-based interface. VisB [11], a tool built upon Java, JavaFX, and
JavaScript, enables the creation of interactive SVG visualizations for models
developed in ProB using an approach that does not require user to have prior
knowledge of JavaScript.

Development is ongoing and part of the lead author’s postdoc at Brown
University, where Sterling’s flexible architecture is being leveraged to develop
user studies with the goal of better understanding the role of visualization and
user interaction in state-based modeling. Additionally, Sterling is the visualizer
for an Alloy-like model finder called Forge [1], which is being developed at Brown
University and is used to teach a Logic for Systems class of over 60 students.

Acknowledgments. We thank Shriram Krishnamurthi, Tim Nelson, and Kathi Fisler
for their ideas and support, Mia Santomauro for the Sterling custom visualization guide,
and the Alloy community for their helpful suggestions. This work is partially supported
by the US NSF.

References

1. Forge. https://github.com/tnelson/Forge. Accessed 12 Apr 2021
2. Baugh, J., Altuntas, A.: Formal methods and finite element analysis of hurricane

storm surge: a case study in software verification. Sci. Comput. Program. 158,
100–121 (2018)

3. Couto, R., et al.: Improving the visualization of Alloy instances. Electron. Proc.
Theor. Comput. Sci. 284, 37–52 (2018)

4. Dyer, T., Altuntas, A., Baugh, J.: Bounded verification of sparse matrix computa-
tions. In: Proceedings of the Third International Workshop on Software Correctness
for HPC Applications, Correctness 2019, pp. 36–43. IEEE/ACM (2019)

5. Gammaitoni, L., Kelsen, P.: Domain-specific visualization of Alloy instances. In:
Ait, A.Y., Schewe, K.D. (eds.) Abstract State Machines, Alloy, B, TLA, VDM,
and Z, pp. 324–327. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
662-43652-3 33

6. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2012)

7. Ladenberger, L., Leuschel, M.: BMotionWeb: a tool for rapid creation of formal
prototypes. In: De Nicola, R., Kühn, E. (eds.) SEFM 2016. LNCS, vol. 9763, pp.
403–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41591-8 27

8. Macedo, N., et al.: Sharing and learning Alloy on the web. arXiv abs/1907.02275
(2019)

9. Misue, K., Eades, P., Lai, W., Sugiyama, K.: Layout adjustment and the mental
map. J. Vis. Lang. Comput. 6(2), 183–210 (1995)

10. Oladimeji, P., Masci, P., Curzon, P., Thimbleby, H.: PVSio-web: a tool for rapid
prototyping device user interfaces in PVS. Electron. Commun. EASST 69 (2014)

11. Werth, M., Leuschel, M.: VisB: a lightweight tool to visualize formal models with
SVG graphics. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ 2020. LNCS, vol.
12071, pp. 260–265. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
48077-6 21

12. Zaman, A., et al.: Improved visualization of relational logic models. Technical
report. CS-2013-04, University of Waterloo (2013)

https://github.com/tnelson/Forge
https://doi.org/10.1007/978-3-662-43652-3_33
https://doi.org/10.1007/978-3-662-43652-3_33
https://doi.org/10.1007/978-3-319-41591-8_27
https://doi.org/10.1007/978-3-030-48077-6_21
https://doi.org/10.1007/978-3-030-48077-6_21

	Preface
	Organization
	Contents
	Regular Research Articles
	Unbounded Barrier-Synchronized Concurrent ASMs for Effective MapReduce Processing on Streams
	1 Introduction
	2 BSP-ASMs for Stream Queries
	2.1 Memoryless Stream Queries
	2.2 Semi-memoryless Stream Queries
	2.3 Memorable Stream Queries

	3 An Extended Unbounded BSP Model
	3.1 Axiomatization
	3.2 Infinite-Agent BSP Abstract State Machine
	3.3 Characterization Theorem

	4 Processing of Stream Queries with MapReduce Using Inf-Ag-BSP ASMs
	5 Conclusion
	References

	Towards ASM-Based Automated Formal Verification of Security Protocols
	1 Introduction
	2 Background
	2.1 Security Protocols
	2.2 Abstract State Machines in a Nutshell

	3 ASM Modeling of Cryptographic Protocols
	3.1 Modeling the Intruder Behaviour
	3.2 NSPK and SSL Models
	3.3 Security Properties Schema

	4 Related Work
	5 Conclusion
	References

	Verifying System-Level Security of a Smart Ballot Box
	1 Introduction
	2 Case Study: Smart Ballot Box
	3 Background
	4 Rigid Events and Parameters
	4.1 Event Enabledness and Parameters
	4.2 Specifying Availability Properties with Rigid Events and Parameters
	4.3 Refinement Preserving Availability Properties

	5 SBB Systems Model in Event-B
	5.1 Refinement Strategy
	5.2 Abstract Level: Modelling an Ideal Voting System
	5.3 First Refinement: Introducing Physical Ballots and Possible Attacker Capabilities
	5.4 Second Refinement: Introducing Time and Availability of Events
	5.5 Third Refinement: Ballot Encryption
	5.6 Fourth Refinement: Ballot Authentication

	6 Debugging Models Using Model Checking
	6.1 Consistency of the Refinement of the Rigid Events
	6.2 Attacks on the Clocks

	7 Related Work
	8 Conclusions and Future Work
	References

	Proving the Safety of a Sliding Window Protocol with Event-B
	1 Introduction
	2 Event-B in Brief 
	3 Modeling the Protocol with Unbounded Indexes
	3.1 The Sliding Window Protocol
	3.2 Safety Property: Behaviour of Reliable Communication
	3.3 Introducing Windows and Receive Buffer
	3.4 Introducing Communication Media

	4 Modeling the Protocol with Bounded Indexes
	4.1 A Small Library for Modular Arithmetic
	4.2 Introducing Bounded Values in the Model
	4.3 Refining Media Towards Lossy Queues

	5 Related Work
	6 Conclusion
	References

	Event-B Formalization of Event-B Contexts
	1 Introduction
	2 Event-B Contexts
	2.1 Formulas
	2.2 Validity
	2.3 Project
	2.4 Static Correcness
	2.5 Semantics

	3 Instantiation of Assertions
	3.1 Informal Presentation
	3.2 Importation of External Assertions
	3.3 Static Verification of Importations
	3.4 Correctness of Theorem Instantiation

	4 Related Concepts
	4.1 Section Mechanism in Coq
	4.2 Module Mechanism in Coq
	4.3 Locales in Isabelle/HOL
	4.4 Clones of Why3
	4.5 Modules of TLA+
	4.6 Summary

	5 Conclusion
	References

	Validation of Formal Models by Timed Probabilistic Simulation
	1 Introduction
	2 Timed Probabilistic Simulation Principles
	2.1 Encoding Simulation Time
	2.2 Encoding Simulation Probabilities

	3 Simulation Infrastructure
	4 Applying SimB for Validation
	5 Case Studies
	6 Related Work
	7 Conclusion and Future Work
	References

	Short Articles
	Sterling: A Web-Based Visualizer for Relational Modeling Languages
	1 Introduction
	2 Sterling Design and Architecture
	3 Creating Scripts and Models
	4 Conclusion
	References

	Extending ASMETA with Time Features
	1 Introduction
	2 Time in ASMETA
	3 Simulating Time
	4 Future Work
	References

	About the Concolic Execution and Symbolic ASM Function Promotion in CASM
	1 Introduction
	2 CASM Concolic Execution and TPTP Model
	3 ASM Function Promotion and Symbolic Consistency
	4 Conclusion
	References

	Towards Refinement of Unbounded Parallelism in ASMs Using Concurrency and Reflection
	1 Introduction
	2 BSP-ASMs for MapReduce with Work Stealing
	3 Reflective Refinement of Unbounded Parallel ASMs
	4 Concluding Remarks
	References

	The CamilleX Framework for the Rodin Platform
	1 Introduction and Motivation
	2 Background
	3 CamilleX
	3.1 The Basic Design
	3.2 Direct Extensions to the Event-B Syntax
	3.3 Indirect Extensions by Plug-Ins

	4 Conclusion and Future Work
	References

	Extensible Record Structures in Event-B
	1 Introduction and Motivation
	2 Background
	3 Tool: CamilleX
	4 Record Structure
	5 Case Study
	6 Comparison with Other Data Structuring Methods
	7 Conclusion and Future Works
	References

	Formalizing and Analyzing System Requirements of Automatic Train Operation over ETCS Using Event-B
	1 ATO over ETCS
	References

	Automatic Transformation of SysML Model to Event-B Model for Railway CCS Application
	1 Introduction
	2 Motivation and Objectives
	3 Case Study and Transformation Approach
	3.1 Case Study and Scope
	3.2 Model-to-Model Transformation

	4 Related Work
	5 Conclusion and Future Work
	References

	Short Articles of the PhD-Symposium (Work in Progress)
	Formal Meta Engineering Event-B: Extension and Reasoning The EB4EB Framework
	1 Context
	2 Motivation and Objectives
	3 Proposed Approach
	3.1 Overview of the Approach
	3.2 Modelling and Instantiation Mechanism

	4 Future Work
	References

	A Modeling and Verification Framework for Security Protocols
	1 Introduction
	2 Related Work
	3 Description of the Approach
	4 Conclusion
	References

	Formalizing the Institution for Event-B in the Coq Proof Assistant
	1 Introduction
	2 The Institution for Event-B
	3 Future Work
	References

	Author Index

