
State-Based Formal Methods in Scientific
Computation

John Baugh(B) and Tristan Dyer

Civil, Construction, and Environmental Engineering,
North Carolina State University, Raleigh, NC, USA

{jwb,atdyer}@ncsu.edu

Abstract. Control systems, protocols, and hardware design are among
the most common applications of state-based formal methods, and yet
the types of modeling and analysis they enable are also well-suited to
problems in scientific computation, where quality, reproducibility, and
productivity are growing concerns. We survey the challenges faced by
developers of scientific software, characterize the nature of the programs
they write, and offer some perspective on the role that state-based meth-
ods can play in scientific domains.

1 Introduction

Called a third pillar of science, computation is an indispensable tool not only
for scientists, but for engineers who simulate physical and natural processes
to evaluate design alternatives. Recent studies on reliability, reproducibility of
results, and productivity have cast concern over what many have suspected or
experienced firsthand, that existing practices of constructing scientific software
are inadequate and limiting the pace of technological advancement. A discon-
nect between modern software engineering practice and scientific computation
is apparent, and yet the unique challenges facing developers of scientific soft-
ware must also be recognized: the lack of test oracles, software lifetimes and
evolving needs that span decades, and the competing objectives of performance,
maintainability, and portability.

We seek to address fundamental design and quality assurance challenges that
are intrinsic to scientific computation and related types of numerical software.
While numerous directions might be taken, our premise and motivating view-
point is the central role that modeling can and must play in the process of design-
ing and working with complex artifacts, including scientific programs. Culturally,
the fit may be a natural one: scientists and engineers are accustomed to working
with models anyway, and with the kind of automatic, push-button analysis sup-
ported by some state-based formalisms, those who develop software can focus
on modeling and design instead of theorem proving.

c© Springer International Publishing AG, part of Springer Nature 2018
M. Butler et al. (Eds.): ABZ 2018, LNCS 10817, pp. 392–396, 2018.
https://doi.org/10.1007/978-3-319-91271-4_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-91271-4_29&domain=pdf


State-Based Formal Methods in Scientific Computation 393

2 Background

Despite broad and recognized impacts, the field of scientific computation faces a
number of challenges. Meeting quality and reproducibility standards is a growing
concern [10], as is productivity [6]. Not merely anecdotes, numerous empirical
studies of software “thwarting attempts at repetition or reproduction of scientific
results” have been cataloged in a recent article by Storer [9], along with their
concomitant effects, including a widespread inability to reproduce results and
subsequent retractions of papers in scientific journals. Productivity problems
are also reported, which Faulk et al. [6] refer to as a productivity crisis because
of “frustratingly long and troubled software development times” and difficulty
achieving portability requirements and other goals.

Sources of difficulty may stem from fundamental characteristics of the prob-
lem domain, along with cultural and development practices within it. For
instance, projects are often undertaken, as one might imagine, for the purpose
of advancing scientific goals, so results may constitute novel findings that are
difficult to validate. In the absence of test oracles, developers may have to settle
for plausibility checks based on, say, conservation laws or other principles that
are expected to hold. Then, if the software is successful, its lifetime may span
a 20 or 30 year period, starting with development and then moving through
hardware upgrades and evolving requirements that are intended to keep up with
ongoing scientific advancements. Development priorities are such that traditional
software engineering concerns, like time to market and producing highly main-
tainable code, may receive relatively less attention compared with performance
and hardware utilization [6].

Proposals to address quality and productivity concerns are varied. Storer [9]
places new and suggested approaches into broad categories of (a) software pro-
cesses, including agile methods, (b) quality assurance practices, including testing,
inspections, and continuous integration, and (c) design approaches, including
component architectures and design patterns. In the category of quality assur-
ance practices, he adds formal methods, noting a couple of experience reports,
but also observing that such approaches have received considerably less atten-
tion in the scientific programming community, possibly due to “the additional
challenge of verifying programs that manage floating point data.”

3 Approach

Although the tools and techniques most identified with scientific computation are
those of numerical analysis—where error prediction, stability, and convergence
are central concerns—such an enterprise offers little guidance in the development
process, where early decisions about decomposition and organization establish
program structure. We suggest separating concerns, and lay out an approach
informed by numerical analyses that allows scientists and engineers to represent
and reason about the essential structure and behavior of the programs they
create. The ideas are well-suited for lightweight tools like Alloy [7], a state-based
formalism that combines declarative modeling and bounded model checking.



394 J. Baugh and T. Dyer

3.1 About Scientific Programs

We consider the application of state-based methods in a relatively uncharted
domain, scientific computation, for which there is little community experience
in working with formal methods. We might ask about the essential complexities,
what they are, and whether formal methods might help. By way of contrast, when
computer engineers model systems, they already have some experience in getting
at these questions. So, for instance, when specifying a two-phase handshake
protocol they know whether they can ignore what’s going through the pipe:
they generally have some sense of how and what to specify, and what to ignore.
There is far less of this kind of experience with programs in scientific areas, so
it is helpful to characterize what they are like.

When we refer to scientific computation, we think primarily of problems
expressed as mathematical models, where approximate solutions are sought for
differential or integral equations that have no closed form solution. As a result,
they must be discretized to produce a finite system of equations that can then
be solved by algebraic methods. Ocean circulation models, for instance, may be
expressed as a system of partial differential equations of the hyperbolic type, and
solved by finite element [11] or other numerical schemes. Because they represent
aspects of the physical and natural world, the terms and parameters appearing in
the equations capture rich state in the form of spatial, geometric, material, topo-
logical, and other attributes. The types of discretizations that may be employed
in both time and space are varied, and each has its own performance, accuracy,
and ease-of-development implications.

3.2 Separating Concerns

What we propose is something akin to the two-phase handshake protocol analogy
where the data going through the pipe are, in this case, numerical expressions.
We cannot ignore them, of course, but we aim to consider them separately, so
we advance the following perspective:

scientific programs = numerical expressions + interstitial machinery

By interstitial machinery we mean the discrete data structures and algorithms
throughout which numerical expressions are embedded. In many cases, the inter-
stitial machinery is itself a complex apparatus, as we find in the class of problems
above, and these are aspects of a program that warrant increased scrutiny and
care. Correctness arguments for this part of scientific programs can be made
without simultaneously reproducing the sometimes deep, semantic proofs of
numerical analysis [8]. Instead, pertinent results may be brought into the mod-
eling process in the form of invariants and other structural properties.

Beyond appealing to experience, a supporting idea for this claim is the fol-
lowing: the numerical analyses performed for scientific computations often apply,
unchanged, throughout a broad range of implementation choices and modifica-
tions, changes in libraries and solvers, and diverse hardware upgrades, over the
life of the program.



State-Based Formal Methods in Scientific Computation 395

3.3 Examples

Applying this perspective, the following studies show how finite state models
can be used to draw useful conclusions about scientific software:

Hurricane Storm Surge. Used in production by the U.S. Army Corps of Engi-
neers and others, ADCIRC is a large-scale ocean circulation model that simulates
hurricane storm surge. In this study [3], we consider implementation choices for
a performance enhancement made by our group, and use models developed in
Alloy to make guarantees about them, in particular that they are equivalence
preserving. The study is motivated by complex interactions between the enhance-
ment and ADCIRC’s discrete wetting and drying algorithm, which operates on
a finite element mesh to accommodate advancing and receding flood waters.

Coupled Earth Models. Numerical models of the earth capture interactions
between atmospheric, ocean, land surface, sea ice, and other components, which
execute concurrently and exchange data during runtime. By modeling read-write
behavior and the timestamps associated with updates, race-free phasing arrange-
ments can be generated, thereby preventing data from either being overwritten
too soon or becoming stale. This approach is applied to a research prototype
of simultaneously executing ocean circulation models for which the exchange of
data must be coordinated [2].

Structural Analysis. Moment distribution [5] is an iterative technique, well-
known among civil engineers, for finding the internal member forces that develop
in building structures when external forces are applied to them. In its most gen-
eral form, the method is similar to asynchronous, chaotic relaxation algorithms,
where portions of a building structure converge numerically at differing rates as
the computation unfolds, depending on process scheduling. The nondeterminism
available here is also inherent in methods used to solve elliptic partial differen-
tial equations, which may exploit nondeterminism in different ways depending
on problem characteristics and hardware features. In an unpublished specifica-
tion that appears online [1], we make use of a numerical study [4] and predicate
abstraction in a modeling approach that facilitates refinement checking.

The examples above span a range of scales from production to research soft-
ware to what might be considered a toy problem, moment distribution, and yet
the problems share features that suggest a role for state-based methods:

– Structure: by supporting implicitness in a specification, Alloy allows arbi-
trary spatial discretizations to be considered in the analysis, e.g., the varied
topological relationships that exist in real building structures.

– Behavior: by not imposing fixed idioms, it can accommodate specifications
of different styles and with different approaches to parallelism that may be
encountered, e.g., in library interfaces like MPI, OpenMP, and OpenCL.

While other approaches might be considered, state-based methods like Alloy
seem particularly appropriate for the types of modeling and analysis we describe,
and for the support it provides for conceptual design.



396 J. Baugh and T. Dyer

4 Conclusions

Numerical concerns figure prominently in scientific computation, and yet the
major sources of complexity in actual software, from our perspective, have more
to do with the interstitial machinery that ties them together. Separating con-
cerns, along the lines we have suggested, should allow state-based methods to
find productive use in a domain that could benefit from the kind of modeling
and push-button analysis they provide. Invariants and other structural proper-
ties often follow directly from numerical analyses, both for algorithms and for
data structures, facilitating safety, liveness, and fairness checks that can be put
together in a variety of ways beyond the ones we mention.

Given the fundamental role of computation in the conduct of modern science,
the development and adoption of better design practices could have far-reaching
benefits. Toward that end, we suggest a focus on essential complexities and sci-
entifically relevant computational abstractions, as advocated by Faulk et al. [6],
using precise and expressive notations that support exploration and analysis.
Future work in this direction may lead to new insights and deeper understanding,
as well as auxiliary tools and instructional materials that make these advances
more accessible to scientists and engineers in traditional areas.

References

1. Alloy models from the paper. http://www4.ncsu.edu/∼jwb/alloy/
2. Altuntas, A., Baugh, J.: Verifying concurrency in an adaptive ocean circulation

model. In: Proceedings of the First International Workshop on Software Correct-
ness for HPC Applications, Correctness 2017, pp. 1–7. ACM (2017)

3. Baugh, J., Altuntas, A.: Formal methods and finite element analysis of hurricane
storm surge: a case study in software verification. Sci. Comput. Program. (2017,
in press). https://doi.org/10.1016/j.scico.2017.08.012

4. Baugh, J., Liu, S.: A general characterization of the hardy cross method as sequen-
tial and multiprocess algorithms. Structures 6, 170–181 (2016)

5. Cross, H.: Analysis of continuous frames by distributing fixed-end moments. In:
Proceedings of the American Society of Civil Engineers, pp. 919–928 (1930)

6. Faulk, S., Loh, E., Van De Vanter, M.L., Squires, S., Votta, L.G.: Scientific com-
puting’s productivity gridlock: how software engineering can help. Comput. Sci.
Eng. 11(6), 30–39 (2009)

7. Jackson, D.: Software Abstractions: Logic, Language, and Analysis. The MIT
Press, Cambridge (2012)

8. Linz, P.: A critique of numerical analysis. Bull. Am. Math. Soc. 19(2), 407–416
(1988)

9. Storer, T.: Bridging the chasm: a survey of software engineering practice in scien-
tific programming. ACM Comput. Surv. (CSUR) 50(4), 47:1–47:32 (2017)

10. Wilson, G.V.: Where’s the real bottleneck in scientific computing? Am. Sci. 94(1),
5–6 (2006)

11. Zienkiewicz, O.C., Taylor, R.L., Nithiarasu, P.: The Finite Element Method for
Fluid Dynamics, 7th edn. Butterworth-Heinemann, Oxford (2013)

http://www4.ncsu.edu/~jwb/alloy/
https://doi.org/10.1016/j.scico.2017.08.012

	State-Based Formal Methods in Scientific Computation
	1 Introduction
	2 Background
	3 Approach
	3.1 About Scientific Programs
	3.2 Separating Concerns
	3.3 Examples

	4 Conclusions
	References




